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Abstract

We consider the Kondo tunneling induced by multiphonon emission/absorption processes in

magnetic molecular complexes with low-energy singlet-triplet spin gap and show that the number

of assisting phonons may be changed by varying the Zeeman splitting of excited triplet state. As

a result, the structure of multiphonon Kondo resonances may be scanned by means of magnetic

field tuning.
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INTRODUCTION

Single electron tunneling through molecular bridges in nanodevices is inevitably accom-

panied by excitation of vibrational modes. Vibration-assisted processes usually manifest

themselves in tunneling through nanodevices as phonon satellites, which arise around main

resonance peaks (see, e.g., [1, 2] and references therein). However, phonon assistance may

induce resonance peak due to interplay with magnetic degrees of freedom in transition metal-

organic complexes (TMOC). Appearance of Kondo-type zero bias anomaly in tunneling

through TMOC was predicted recently [3]. In this paper we consider multiphonon processes

in Kondo tunneling in presence of magnetic field. We discuss the fine tuning effect of mag-

netic field on the Kondo tunneling induced by multiphonon processes in a situation, where

the ground state of TMOC with even occupation is a spin singlet. In this case the Kondo

resonance in tunneling arises when the phonon emission compensates the gap between one

of projections of the excited high-spin and the ground zero spin state of TMOC. Then the

Kondo-like effect arises due to singlet/triplet transitions, which can be treated as effective

spin-flip processes [4].

MODEL

Phonon-assisted electron tunneling through TMOC as well as tunneling through other

nanoobjects (quantum dots, nanotubes, ets) is described within a framework of Anderson

model supplemented with the terms describing vibrational degrees of freedom and their

interaction with electron subsystem [2, 3, 5]

H = Hd + Hl + Htun + Hvib + He−vib . (1)

Here Hd stands for the electrons in the 3d-shell of TMOC. It includes strong Coulomb and

exchange interaction, which predetermine the spin quantum numbers of the corresponding

electron configuration 3dn (n is even)), Hl contains electrons in the metallic leads playing role

of source (s) and drain (d) in the electric circuit, Htun is responsible for electron tunneling

between TMOC and leads, Hvib describes vibrational degrees of freedom in TMOC, and the

interaction between electronic and vibrational subsystems is given by the last term He−vib.

Following the approach developed in [2, 3] we choose the phonon-assisted tunneling as a

source of this interaction and represent vibrational subsystem by a single Einstein mode Ω.
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Then three last terms in (1) are written as

Hvib + Htun + He−vib = ~Ωb†b +
∑

akσ

(

te−λ(b†−b)c†akσdσ + H.c.
)

. (2)

Here the operators b stand for phonons, ckaσ, dσ describe electrons in the leads a = s, d

and the d-shell of TM ion, respectively, λ is the electron-phonon coupling constant. When

deriving (2) we assumed that the coupling is strong enough, so that multiphonon processes

are treated exactly by means of the Lang-Firsov canonical transformation (cf. [2]). Another

canonical transformation of Schrieffer-Wolff (SW) type [7] excludes Htun from the Hamilto-

nian (1) and maps it on an effective Hilbert subspace with fixed (even) number of electrons,

singlet ground state and low-lying triplet excited state of TMOC. The effective SW-like

Hamiltonian is

Heff =
1

2
∆S2 + hSz + Hl + ĴTS · s + ĴRR · s + Hvib (3)

(see [3, 6]). Here Hd [the first two terms in (3)] is represented only by spin degrees of

freedom, ∆ = ET − ES is the energy of singlet-triplet (S-T) transition, S, Sz is the spin

operator and its z-projection, h = µBgB is the parameter of Zeeman splitting in exter-

nal magnetic field B. The electron spin operator is given by the conventional expansion

s = 1
2

∑

kk′

∑

σσ′ c
†
kστ σσ′ck′σ′ where τ is the Pauli vector. Unlike the conventional SW

Hamiltonian, our Hamiltonian (3) contains one more vector R, which describes three com-

ponents of S-T transitions [6]. This vector will be specified below. The electron-phonon

interaction is now built into the effective exchange constants ĴT = t2e−2λ(b†−b)/δET and

ĴR = t2e−2λ(b†−b)/δES. Here δET , δES are the energies of addition of an electron from the

leads to the TM ion in a triplet and singlet states, respectively.

MULTIPHONON PROCESSES IN KONDO COTUNNELING

The essence of the mechanism of phonon-assisted Kondo cotunneling as it was formulated

in Ref. [3], is that the spin excitation energy gap ∆ which quenches the conventional

Kondo effect in a nanoobject with even occupation, may be compensated by the energy of

virtual phonon emission/absorption processes. As a result the zero bias anomaly (ZBA)

arises in tunnel conductance in spite of the zero spin ground state of the nanoparticle. This

mechanism implies fine tuning |~Ω−∆| < EK , where EK is the characteristic Kondo energy,

which is rather restricttive condition. To make situation more flexible, we address here to

3



T

S

T

S

FIG. 1: Single phonon con-

nects singlet with spin 1

projection of triplet.
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FIG. 2: n-phonon processes

connect singlet with spin 1

projection of triplet (n~Ω <

∆).
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FIG. 3: (n + m)-phonon

processes connect singlet

with spin 1̄ projection of

triplet ((n + 1)~Ω > ∆).

the case of strong electron-phonon interaction and apply magnetic field as an additional

tuning instrument. The main ideas are illustrated by Figs. 1-3. The Zeeman term in the

Hamiltonian (3) is responsible of splitting of the triplet state |Tµ〉 into 3 components with

spin projections µ = 1, 0, 1̄. If the condition ∆ − ~Ω − h < EK is satisfied (Fig. 1), then

the states |S〉, |T1〉 form effective vector operator R with components R+ =
√

2|T1〉〈S|,
R− =

√
2|S〉〈T1|, Rz = |T1〉〈T1| − |S〉〈S|, which acts effectively as a spin 1/2 operator

and enters the SW Hamiltonian (3) (see [4, 6] for further details). The term ĴRR · s is

responsible for Kondo-type resonance tunneling in accordance with the mechanism proposed

in [3] for zero magnetic field, where all three components of spin S = 1 are involved. If the

resonance condition is fulfilled for n-phonon processes, ∆− h− n~Ω < EK , then the Kondo

tunneling is assisted by virtual excitation of n-phonon ”cloud” (Fig. 2). If the condition

∆ + h − (n + m)~Ω < EK is valid, then the opposite spin projection |T1̄〉 is involved in

Kondo tunneling, and the vector R has the components R+ =
√

2|S〉〈T1̄|, R− =
√

2|T1̄〉〈S|,
Rz = |S〉〈S| − |T1〉〈T1̄|.

To find the contribution of phonon-assisted processes in Kondo tunneling, one should cal-

culate the exchange vertex γh, which renormalizes the bare vertex ĴR due to phonon emis-

sion/absorption processes and logarithmically divergent parquet insertions. This dressed

vertex is shown in Fig. 4. To use the Feynman diagrammatic technique, the spin operators

are represented via effective spin-fermion operators [7]. The wavy line corresponds to a

single-phonon propagator in the case shown in Fig. 1. Then the straightforward calculation
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FIG. 4: Phonon and parquet corrections to the vertex γB. Solid and dashed lines denote spin-

fermion and conduction electron propagators, all parquet series are incorporated in the insertion

shown by the square box. The multiphonon propagator is shown by the wavy line.

similar to that presented in [3] gives for the corresponding vertex

γh(Ω) ∼









ρJ2
R log

(

D

max[kBT, h, |∆ − ~Ω − h|]

)

1 − (ρJR)2 log2

(

D

max[kBT, h, |∆ − ~Ω − h|]

)









. (4)

Here T is the temperature, D is the effective width of the electron conduction band and ρ

is the density of states on the Fermi level. The tunnel transparency T is proportional to γ2
h,

and it is seen from (4), that the Kondo peak arises as a ZBA in T , provided |∆−~Ω−h| ∼
EK ≫ B. If the multiphonon processes are involved in accordance with Fig. 2, then the

wavy line in the diagram for γh corresponds to the multiphonon propagator [8] weighted with

Pekarian distribution, and the vertex function transforms into a sum of phonon satellites

γh =
∑

n

e−S Sn

n!
γh(nΩ). (5)

Here S = ν/~Ω is the Huang-Rhys factor and ν = λ2/~Ω is the polaron shift. This

equation is valid at kT < ~Ω and ν > ρt2, otherwise the satellites smear into a single hump

around the maximum of Pekarian distribution. Since ~Ω ≫ EK , only one phonon replica

satisfying the condition |∆ − h − n~Ω| ∼ EK survive at given magnetic field B . This

means that changing B one may ”scan” the Pekarian function in a certain interval. In case

illustrated in Fig. 3 second system of satellites arises with Kondo peaks satisfying condition

|∆ + h − (n + m)~Ω| ∼ EK .
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Coupling constant α = JR/ǫF

E
n
er

gy
ǫ/

ǫ F

Kondo

h̄
ǫF τG/G0 ∝ ln−2(h̄/τTK)

G/G0 ∝ ln−2(T/TK)

Doniach Diagram

αc

FIG. 5: Phase diagram illustrating the compe-

tition between Kondo temperature and relax-

ation damping. Solid line stands for character-

istic Kondo energy. Dashed line corresponds to

the damping parameter. The phonon-assisted

Kondo tunneling is effective for α > αc, where

αc ∼ 10−2 for TMOC coupled with metallic

leads. G/G0 is ehnancement factor for ZBA in

tunnel conductance.

Since phonon-assisted Kondo tunneling is essentially non-equilibrium process, one should

estimate the contribution of decoherence and dephasing effects. Similar problem was dis-

cussed in [9, 10] for a situation where the gap ∆ is compensated by finite source-drain

bias. To evaluate these effects, one should calculate the damping of S-T excitation (imag-

inary part of the corresponding self energy stemming from the vertex part shown in Fig.

4). Performing calculations in analogy with [9], one gets for the lifetime τ the estimate

~/τ ∼ (ρJR)2Ω. This damping should be compared with the Kondo energy extracted from

(4), EK ∼ ǫF exp(−1/ρJR). The competition between two quantities reminds that between

the indirect exchange Iin ∼ ρJ2
R and the Kondo energy in the Doniach diagram for Kondo

lattices [7]. However, unlike the Doniach dichotomy, in our case EK dominates in the most

part of the phase space because ~/τ contains small parameter Ω/D ≪ 1 comparing to Iin

(see Fig. 5) Thus, the spin-phonon relaxation is not detrimental for the phonon-assisted

Kondo effect for realistic model parameters. One more interesting situation is the case

where two vibration modes exist in a molecule, one of which may be put in a resonance with

the state T1 at some field h = h1, whereas another one may be tuned to the state T1̄ at

h = h2 > h1. (Fig. 6).

To conclude, we have demonstrated that the multiphonon emission/absorption processes

may initiate Kondo effect in TMOC with the ground singlet state in a situation where the

electron tunneling from metallic reservoir to a 3d orbit of TM is accompanied by polaronic

effect in molecular vibration subsystem. The release of vibrational energy compensates

the singlet-triplet gap in the spin excitation spectrum. Varying the Zeeman splitting in

external magnetic field, one may scan the Pekarian distribution of Kondo-phonon satellites
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FIG. 6: Two-mode regime.

in tunneling conductance. Magnetic field tuning changes drastically the character of phonon-

assisted Kondo screening. In zero magnetic field the spin S = 1 is underscreened by phonon-

assisted Kondo processes [3], whereas the Zeeman splitting results in reduction of effective

spin from 1 to 1/2 and hence to complete Kondo screening. One make hope to observe

this phenomenon in the device with suspended nanotube, which plays part of a quantum

dot[11]. The frequency of the stretching mode in this nanotube is comparable with the

values of magnetic field used in standard experiments (~Ωstretch ≈ 700µeV ), so one may

hope that the zero bias anomalies in Kondo tunneling assisted with one and two phonons

(n = 1 in Fig. 3) may be detected in this device.

Authors are greatly indebted to M R Wegewijs and A. Hüttel for stimulating discussions.
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