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Abstract The concept of dynamical and hidden symmetries in quantum dots and quan-
tum ladders is introduced and developed. These symmetries are manifested in
tunneling processes. If one studies the excitations in a given charge sector of
nanoobject, then only the spin variables and/or electron-hole pairs are involved
in the excitation spectrum, The spins in individual rung of a quantum ladder
(QL) or in isolated complex quantum dot (CQD) form certain multiplets charac-
terized by usual SU(2) symmetry. This symmetry is broken due to spin transfer
through QL or due to electron cotunneling through CQD. We show that dy-
namical symmetries of spin multiplets are unveiled in these processes. These
symmetries are described by SO(n) or SU(n) groups in various conditions. We
develop mathematical tools (fermionization procedure) for description of dynam-
ical symmetries. The families of effective spin Hamiltonians of CQD and QL are
derived in terms of generators of dynamical groups, and specific properties like
Kondo tunneling through CQD and Haldane gap formation in QL are discussed.
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1. Introductory notes

The symmetry of low-dimensional systems is a key to their peculiar prop-
erties [1]. It predetermines their thermodynamics, response to external fields,
transport properties, phase diagrams, etc. As a rule, description of strongly in-
teracting electrons in these systems should be constructed on non-commutative
algebras, and specific structure of these algebras have direct consequences for
observable physical properties of nanoobjects. In many physically interesting
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cases not only the symmetry of a given Hamiltonian but also the dynamical
symmetry of low-energy excitations is relevant. Let us consider a system with
Hamiltonian H, whose eigenstates |A) = |M u) form a basis to an irredicible
representation of some Lie group G (1 numerates the lines of this representa-
tion). It is convenient to express the generators of Lie algebras via Hubbard

operators X" = |A)(A’|. Then the Hamiltonian under consideration is ex-
pressed in terms of diagonal Hubbard operators
= Y EalA)A] = Z Epy XM (1)
A=Mp
so that / ’
(XM Hol = —(Ear — Ex) XY 2

Then the symmetry group of the Hamiltonian is generated by the operators
XXMMy’ ghich commute with H, whereas the dynamical symmetry of H
is generated by the whole set of operators { X }. This dynamical symmetry
may be exposed, when Hj describes a quantum object, which is a part of larger
system with the Hamiltonian H, and its symmetry is violated by interaction with
this environment. If the interaction scale is characterized by some energy &,
than the dynamical symmetry is determined by transitions between those states
from the manifold F5, which fall into the interval £. We divide the Hubbard
operators acting within this low-energy interval into subsets {5} and {R}.
Here S-operators generate the symmetry group G, whereas S- and R-operators
together generate the dynamical group D. In this paper we study spin properties
of quantum dots and quantum ladders, so the group G is in fact SU(2) group of
a spin momentum. It will be shown that the dynamical symmetry of this object
is that of SO(n) group. We will construct the corresponding algebras by means
of Hubbard operators, rewrite Hamiltonians H in terms of group generators,
discuss the possible ways of fermionization of these Hamiltonians and consider
some specific properties of quantum dots and quantum ladders.

2. From spin rotator to Kondo tunneling

The symmetry of spin rotator is an intrinsic property of many low-dimensional
spin systems. As was shown in [2], this symmetry predetermines the low-
energy dynamics of zero-D quantum dots with even occupation in a tunneling
contact with metallic Fermi resevoirs. Let us consider a double quantum dot
(DQD)occupied by two electrons in a neutral state in a T-shaped parallel ge-
ometry (Fig.1) as a representative example.

In this geometry two valleys of DQD are coupled by tunneling V. In the
limit of strong Coulomb blockade (), such that V' < (@), the energy spectrum
of isolated DQD consists of ground state singlet with energy Eg, spin triplet
with the energy Er separated by the exchange gap 6 = 2V?2/Q from Eg and
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Figure 1. Parallel Double Quantum Dots in contact with source (S) and drain (D) metallic
leads. V and W are tunneling coupling constants, v, is a gate voltage.

two charge transfer excitons with large excitation energies ~ (2, the charging
energy for a given well of DQD. Thus the indices A in the Hamiltonian H (1)
acquire the values A = S, T'u with ¢ = 1, 0, 1 standing for three projections of
spin one.

The dynamical symmetry of the {.S, T'} manifold is that of SO(4) group. Two
vectors generating this group are constructed by means of Hubbard operators
(2) in the following way:

gt — \/§(X10+X0‘1), 5, = X11V_X—1—1' 3)
Rt = \/i(XIS_XS—l)7RZ:_(XOS_}_XSO)' ’

Here S is the spin 1 operator, while R is the R-operator describing S/T tran-
sitions. The spin algebra is o4, which is characterized by the commutation
relations

[Sa, Sﬁ] = 1€afy Sy, [Res Rﬂ] = 1€y Sy, [Ra, Sg] = 1eapgy Ry (4)

(c, 3,y are Cartesian coordinates, e,3+ is a Levi-Civita tensor). These vectors
are orthogonal, S - R = 0, the Casimir operator is S? + R2 = 3.

A gate voltage v, applied to DQD turns the level positions essentially asym-
metric, and the charging energy () may be nearly compensated for at least one
charge transfer singlet exciton (say, right, A = FE,.). In this case we encounter a
"Coulomb resonance" excitation, where the spin singlet and charge transfer ex-
citon (also singlet!) are strongly intermixed, but the spin triplet is untouched by
this resonance tunneling. This means that we deal with a manifold {S, T, E,.}.
Then one more R-vector R; and a scalar A should be included in the set of
group generators. These generators are expressed in terms of Hubbard operators
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as follows:

Rf =2 (XIET _ XE,-1> . Ry, = — (XOE,,. + XE,,.O) ,
A =i(X5E — xES : )

To close the alebra the commutation relations (4) which are valid also for R,
should be completed by

[Rlaa Rlﬁ] = ZéaﬂA? [Rlou A] - Z'Rlom (6)
{Av Rla] = iRla, [A, Sla] = (.

The system of commutation relations (4), (6) is that of o5 algebra, and the man-
ifold {S, T, E,} obeys SO(5) dynamical symmetry, provided all three levels
are involved in interaction in a framework of the Hamiltonian H. The Casimir
operator for SO(5) group is S2 + R? + Rq? + A% = 4.

In terms of these operators Hg acquires the form

Ho = % (ErS® + BsR?) + Q(N - 2)?, )

and
. : |
Hy=, (BrS* + EsR*+ EgR}) + QN - 2% @®

for SO(4) and SO(5) group, respectively. The last terms in (7) and (8) control
the number of electrons given by the operator N in DQD.

As is seen from this equation, spin is still conserved in isolated DQD.
However, a tunnel contact with metallic leads breaks the spin conservation
and reveals the dynamical symmetry of DQD. The mechanism of this non-
conservation is electron cotunneling with spin flips, when an electron with spin
o enters DQD, whereas another electron with spin ¢’ leaves it. This process is
known to be a source of Kondo effect in tunnel barriers and quantum dots [3].
Eliminating charge degrees of freedom by means of the Schrieffer-Wollff trans-
formation, one usually comes to an exchange-like cotunneling Hamiltonian of
the type J.otS - s, where J.,p ~ W2 and W is a lead-dot tunneling amplitude.

Since Ep—FEs = § > 0, the Kondo effect seems to be irrelevant in DQD with
even occupation. However, one should remember that the tunneling W induces
additional contribution into indirect exchange between two wells in DQD. As
is shown in Refs. [2] this contribution may change the sign of 4 provided the
excitation [, is soft enough, but the condition V/(Er — Eg) < 1 is still valid.
Then the exciton F, is eliminated from the manifold, the symmetry of DQD is
reduced from SO(5) to SO(4) and the Schriefter-Wolff transformation yields
the effective spin Hamiltonian i

H=Ho+JL,S s+ JTR s, (9)
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where JST and J5T are two indirect exchange coupling parameters which are
renormalized by Kondo screening. This screening is given by both vectors S
and R.

The problem of Kondo tunneling within the framework of the Hamiltonian
(9) is solved already, at least in the weak coupling limit (see [2] and references
therein), so we do not enter the details here. For our further purposes it is
important, that this example demonstrates how the dynamical symmetry of
S/T pair is revealed in interaction with continuum, which breaks the rotational
symmetry of isolated spin system. This interaction inserts its own energy scale
& in the problem (the Kondo temperature T in example considered above),
and the dynamical symmetry of spin rotator becomes relevant when the T/S
energy splitting i1s comparable with Tx. In more complicated quantum dots
the spin manifolds consist of several S/T pairs, and the dynamical symmetry
of such dots is described by SO(n) groups (see Ref. [4] where the cases of

n = b, 7 are described).

3. From spin rotator to spin ladder

Being armed by the above mathematical tools, we see that any rung of a
two-leg spin ladder (Fig. 2a) possesses the same SO(4) symmetry, because
two spins 1/2 form a S/T manifold. Therefore the dynamical symmetry is an
intrinsic property of spin ladders and decorated spin chains shown in Figs 2b,d.
Here we derive the family of Hamiltonians for these systems and discuss various
manifestations of this symmetry in their energy spectrum.

Generic Hamiltonian for spin systems under consideration is ths Heisen-
berg-type spin 1/2 ladder Hamiltonian '

H(SL =J; Z Sil'si2+JlZ Z Sia * Sja (10)

(11,12) & (ja,jor)

Here index o = 1,2 enumerates the legs of the ladder, and the sites (i1,42)
belong to the same rung (Fig.2a).

A chain of dimers of localized spins illustrated by Fig. 2b is described by
the simplified version of this Hamiltonian

HC = J, Y sa-sia+ iy sin-sp (11
(i1,2) (3)

The geometry of alternate rungs is chosen in the system (11) to av01d exchange
interaction between spins s;2 and s;3.

The transverse coupling may emerge either from direct exchange (in case of
localized spins) or from indirect Anderson-type exchange induced by tunneling
(similarly to the case of quantum dots). In the latter case the sign of J; is
antiferromagnetic (AFM), in the former case it may be ferromagnetic (FM) as
well. The same is valid for .J. -




182

(b) (d)

Figure 2. Spin Ladder (a), Spin Rotator Chain (b), Spin ladder in the CDW phase (c) and
Alternate Spin Rotator Chain (d).

We start with diagonalization of the Hamiltonian of perpendicularly aligned
dimer (cf. Ref. [5]). The SO(4) symmetry stems from the obvious fact that
the spin spectrum of a dimer {i1,i2} is formed by the same S/T pair as the spin
spectrum of DQD studied in the previous section. This analogy prompts us a
canonical transformation connecting two pairs of spin vectors, {s;1,s;2} and
{S;,R;}: Two sets of spin operators are connected by a simple rotation
sa= DT g, MR (12)
Then the Hamiltonian H; of a single dimer ¢ is the same as the Hamiltonian
(7) of DQD. The total spin of a dimer is not conserved in a spin chain, so the
dynamical symmetry of an individual rung is revealed by the modes propagating
along the chain [5]. Applying the rotation operation (12) to the Hamiltonians
(10) and (11), we transform them to a form

H = Ho + Hin (13)

Here Hy = )_, H; is common for both models. It is useful to include the
Zeeman term in H,;,

1
H,; = 5 (ESRZQ + ETSZZ) + hS;,. (14)

We confine ourselves by a charge sector NV; = 2 and omit the Coulomb blockade
term for the sake of brevity. The interaction part of SL. Hamiltonian transforms
under the rotation (12) to the following expression

1
Hig = 751D _(8:S; + RiR;) (15)
(i)
The interaction part of the SRC Hamiltonian is

. .
HOEC = 1 > (8iS; + 2R;S; + RiR;) (16)
(is)
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One may also consider the alternate SRC model (ASRC, see Fig. 2(c)). Its
interaction Hamiltonian acquires after rotation (12) the form

1

nt
(i5)

Now we see that all three effective Hamiltonians belong to the same family.
In all cases initial ladder or "semi-ladder" Hamiltonian is transformed into
really one-dimensional spin-chain Hamiltonian, which, however, takes into
account the hidden symmetry of a dimer. The effective Hamiltonians (15),
(16), (17) contain operators R describing the dynamical symmetry of dimers.
The dynamical symmetry turns the spectrum of this Hamiltonians to be richer
than that of a standard Heisenberg chain. Like in many other cases, rotation
transformation eliminates the antisymmetric combination of two generators.

The transformation (12) reveals the hidden symmetry of spin 1/2 ladder (15).
It maps the ladder Hamiltonian onto a pair of coupled chain Hamiltonians: one
is the conventional spin 1 chain, the other is a pseudospin chain. Spin S; and
pseudospin R; are coupled kinematically by the commutation relations and by
the local Casimir constraint

Ss? | R? = 3. (18)

It is instructive to compare the Hamiltonian (15) with the effective Hamil-
tonian of spin 1 chain, which arises after decomposition of spin-one operators
into a pair of spin 1/2 operators, S; = s; +r; [6]. This decomposition operation
transforms initial Hamiltonian into a form similar to H°%¢ but for spin-one-
half operators s;, r;. The difference between two cases is that these effective
spins commute (unlike the operators S;, R;). In other terms, the difference is
that the local symmetry of spin-one chain is SO(3) whereas the local symmetry
of SRC is SO(4). The spin rotator chains (16), (17) are in some sense interme-
diate between spin chains and spin ladders. In this cases the spin-pseudospin
symmetry is obviously broken by the cross terms 2S;R ;.

The excitation spectrum of spin ladders may be calculated in terms of op-
erators S; and R;. For example, the well known expression for a gap AF in
the excitation spectrum in the limit of strong transverse exchange J; > J; for
AFM interaction [5] is

(J1/4)? ijas (<ﬂ?ﬂ|RiRj|SiSj)2 3J7 |
: =Ji+=E (19

AFE =J
et (Er — Es) 37,

(here Tgﬂ and S;5; stand for possible triplet projections and spin states at the
sites 7, 7, respectively). The singlet-triplet excitations above this gap are given
by the dispersion law w(k) = AE + Jjcosk.
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The Casimir operator (18) transforms to the local constraint

2oA=10s f;{ fa = 1. To fermionize the generators of SO(5) group, one should
add two more spin fermions and one more spinless fermion describing transi-
tions to the excitonic state |E).

We start the studies of elementary excitations in SRC with the aniso-tropic
XXZ version. of general effective Hamiltonian. The simplest one is the case
(17). The problem is reduced to a standard XY-model for spin one half, and the
spinon spectrum may be easily obtained either by bosonization or by spinon-
type fermionization. In former case one deals with hard-core bosons, and in
the latter one the problem is mapped onto the non-interacting incompressible
fermions at half-filling.

Next is a more complicated case of XXZ-SRC model (21) specifically on its
simplified alternate version, which is obtained from the Hamiltonian (17). The
Hamiltonian of this model is

H= i]l > (S8 + 8P+ S7P + A(S]S; + 257 PF).  (26)
(3)

The S-S part of this Hamiltonian describes the S=1 chain, with the Haldane gap
in the excitation spectrum (see, e.g.,[9, 10]). The question is, how do the S-P
interaction modifies the gap. We consider the case of FM dimers, when the
triplet is the ground state. In this case one has one more gap mode, where the
gap equals .J;. This mode is coupled to Haldane branch only via S-P exchange
terms in (26). ,
The spin liquid fermionization approach adopted here is a convenient tool for
description of Haldane spectrum. Unlike the S=1/2 model, where the spin-liquid
state is easily described by global U(1) invariant modes 75;7}; = >, f;rg fiol?,
in case of S=1, one deals with variables which effectively break this symmetry.

One can rewrite the Hamiltonian of SRC model with A = 0 in a form

1 _
H = Z [( it + £ fﬂ> BYBYS 4 (f1 11,09 B + H.c')] 27)
ij
where B]OS = foj+/fsj, C]OS = fo; — fs;. The termsin the firstline of Eq. (27)
describe coherent propagation of spin fermions accompanied by a backflow on
neutral fermions, whereas the terms in the second line are "anomalous" (they
do not conserve spin fermion number). For example the propagator (5’;r S5 )

contains anomalous components f;fl f;i fiofio — F¢§,1IFJ’2¥00 along with normal
ones f}l fi ijo fio- Here Fi; apnr = fia fia. The first term in (27) describes the
kinetic energy spinon excitations, and two last anomalous term breaking U(1)
symmetry are responsible for the Haldane gap.

To reveal the effect of dynamical symmetry on the Haldane gap, one has to
note that the terms B%% and B appear both as a counterflow in the first term
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and as gauge symmetry breaking terms in the second line. In spin 1 ladder the
counterflow term ~ f;o fjo predetermines the width of spinon band described
by the first line of Eq. (27). Apparently, the one extra channel (tripet/singlet
transitions in B%) enhances this effect, because in this case the local constraint
imposes further restrictions of phase fluctuations.

The gap itself is due to anomalous correlations described by the second line
of Eq. (27). Here the appearance of second channel of spinless excitations

results in formation of even and odd operators BJO.S and CJQS . The Haldane

gap closes when the |0) and |S) states are degenerate (the odd operator C'JQS
nullifies the anomalous terms responsible for its formation). This means that
appearance of 0.5 channel favors closing of the Haldane gap.
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Figure 3. Lowest order contributions to anomalous propagator (27).

In a strong coupling case of J; >> J; both trends above may be considered at
least in the lowest order of perturbation theory. In case of spin ladders [5] the
1-st and 2-nd-order in g = J;/J; anomalous diagrams are represented in Fig.3.

5. SO(n) dynamical symmetries for a two-leg quantum
ladder

It was mentioned in Section II that the dynamical symmetry of DQD becomes
SO(5), if charge transfer excitonic state is involved (see Eq. 8). In this section
we discuss the origin of this symmetry in spin ladders. This problem arose in a
context of SO(5) symmetric t — J model of 2D cuprate superconductors [11].
Later on the version of this theory was formulated for cuprate two-leg ladders
[12]. Here we show that the dynamical SO(5) group arises in description of
Heisenberg ladder, but excitonic states are involved in this symmetry instead of
Cooper states.

Let us consider a two-leg quantum ladder depicted in Fig.2a under condi-
tion of strong Coulomb blockade imposed on each rung i. We allow electron
tunneling ¢7; along both legs. This tunneling is described by the Hamiltonian

Hiwn = Y Dt} djoo. (28)

ij ao

(only nearest-neighbor hopping along the leg is allowed). This hopping results
in the appearance of charged rungs because each hopping act creates a hole on a
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rung j and an electron on a rung . To treat this charging properly the Coulomb
blockade term in the Hamiltonian H; (14) should be restored (see Eq. 8), and
the terms with excess electron and excess hole should be added. It is more
convenient to represent the Hamiltonian H; of an individual rung ¢ in terms of
diagonal Hubbard operators [see (1)]

Hi=> XA: EAXM+Y E X+ Erx(t (29)
7 Y r

Here the index v = ao stands for the states with one electron with spin o
on a site i« of the rung ¢, the index I' = «ao stands for three-electron states
of a rung, where two electrons occupy site 2« and one electron with spin o is
located in a site iav (& = 2 if @ = 1 and v.v). The energy levels I, and Er are
separated by a Coulomb blockade gap ~ () from the two-electron states Fp.
The Hamiltonian (28) in these terms 1s

Hiun = > O XX 4+ Hee, (30)
ij, o yT'A

It is seen from (30) that the intersite hopping "charges" two neighboring
rungs in a ladder, which was initially neutral, and one should pay the energy
~ @ for each hopping act, like in the generic Hubbard model at half-filling.
This energy loss is reduced if an electron-hole pair is created at a given rung 7.
In this case the electron-hole attraction V' < 0 partially compensates charging
energy (). Let us assume the hierarchy Q@ > () — |V/| > t. Then the states |I")
may be excluded from the manifold in favor of excitonic states |¢F,) similar to
the states | E,.) introduced in (5). Here o = 1(2) for the electron occupying site
11(¢2). If the ground state of a rung is singlet, |¢.S), then electron and hole have
antiparallel spins and the excitation energy is Q' = @ — |V|. Even combination
of two states |iE(1,2)> form a singlet exciton |i E'). Such exciton can propagate
coherently along the ladder unlike single electron, whose tunneling leaves a
trace of charged states according to (30). Indeed, translation of e-h pair from
a rung ¢ to a neighboring rung 7 + 1 can be presented as coherent tunneling of
electron from a site 7« to a site 7 + 1, o and another electron in the opposite
direction (from ¢ + 1, & to ¢, &. The exciton propagation is described by the
following term in effective Hamiltonian: ’

H, =Y K°XFEXES (31)

?

with effective exchange coupling constant K = |t;t3]/Q’, and the dispersion
law describing coherent exciton propagation is eg(k) = 2K cosk. As was
shown in Section 2, the manifold {iS,¢T,iE} possesses the local dynamical
symmetry SO(5) [see Egs. (5), (6)], and this symmetry allows existence of
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coherent collective singlet exciton mode. The Hamiltonian (31) acquires a
form H., = (K°/4) > i A, A] in terms of generators of SO(5) group (5),
where A; = (R? — 1) A;. There is one more collective mode, namely triplet
exciton |E,) (u = L1, 0) separated by the gap ~ J; from the singlet exciton.
In case of triplet ground state (J; < 0), this mode becomes the lowest one, and
the Hamiltonian similar to (31) may be derived for triplet exciton propagation
with operators XiTE" replacing X°E. In this case the manifold {iS5,iT,iE,}
consists of one singlet and two triplets, and the corresponding dynamical group
is SO(7) [4].

If exchange and excitonic gaps are comparable in magnitude, then the inter-
play between exciton and magnon modes is possible, and dynamical symmetry
will result in observable physical effects. Like in cuprate ladder, [13], the ex-
citonic instability can develop for certain values of model parameters, which
results in phase separation and, in particular in formation of CDW phase illus-
trated by Fig. 2c (where double and empty circles stand for doubly occupied
and empty sites respectively).

6. Concluding remarks

We rederived a family of Hamiltonians for quantum dots and quantum ladders
in terms of SO(4) group, which describes the dynamical symmetry of a spin
rotator [2]. We exploited the fact that in case, when the Hamiltonian 7 contains
blocks H; formed by two sites occupied by spins 1/2, one may use its eigenstates
(singlet-triplet manifolds) as a basis for representing the spin invariants entering
‘H. These invariants contain the Runge-Lenz-like vectors R,; along with the
usual spin vectors S;. If the electron-hole pairs are also included in the set
of eigenstates, then the local dynamical symmetry of H; is characterized by
the SO(n) group with n = 5 or 7 for a singlet and triplet ground state of
H;, respectively. The elementary excitations in quantum dots and quantum
ladders are described by means of generators of SO(n) groups and the interplay
between different branches of excitation spectra is a direct manifestation of local
dyqq?nca] symmetry violated by non-local interactions.
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