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Interplay of charge and spin in quantum dots: The Ising case
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The physics of quantum dots is depicted succinctly by the universal Hamiltonian, where only zero-mode
interactions are included. In the case in which the latter involve charging and isotropic spin-exchange terms, this
would lead to a non-Abelian action. Here we address an Ising spin-exchange interaction, which leads to an Abelian
action. The analysis of this simplified yet nontrivial model shed light on a more general case of charge and spin
entanglement. We present a calculation of the tunneling density of states and dynamic magnetic susceptibility.
We explain how the latter can be used for an experimental determination of the exchange interaction strength.
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I. INTRODUCTION

Significant progress in the study of the physics of quantum
dots (QD’s)1 has been achieved following the introduction
of the universal Hamiltonian2,3 (UH). The latter facilitated the
simplification of intricate electron-electron interactions within
a QD in a controlled way. Within that scheme, interactions are
represented as the sum of three spatially independent terms:
charging, spin-exchange, and Cooper channel. Notably, even
the inclusion of the first two terms turned out to be nontrivial:
the resulting action is non-Abelian.4

To understand the complexity of such a problem, one
can refer to the case of charging-only interaction. As was
suggested by Kamenev and Gefen,5 one can take the following
steps in solving that problem: start from a fermionic action
that includes an interaction term quadric in the (fermionic
Grassman) variables, perform a Hubbard-Stratonovich trans-
formation by introducing an auxiliary bosonic field, then
perform a gauge transformation over the Grassman variables,
and finally integrate them out. The resulting, purely bosonic,
action is simple. In an imaginary time (Matsubara) picture, the
action is quadratic in the bosonic components, which renders
this action easily solvable. The trick of gauge-integrating over
Grassman variables does not work for the non-Abelian case,4

so an alternative approach is needed.
Attempts to account for charge and spin interactions in QD’s

have been reported earlier. Alhassid and Rupp6,7 have found
an exact solution for the partition function (and susceptibility);
elements of their analysis were then incorporated in a master
equation analysis of transport through the QD. More recently,
an exact solution of the isotropic spin interaction model has
been presented.8 For the latter model, some quantities turn out
to be particularly simple (e.g., the finite frequency spin sus-
ceptibility vanishes; evidently, there is no difference between
longitudinal and transverse spin susceptibility). This means
that the analysis of a model with anisotropy in the spin interac-
tion is called for. A perturbation expansion in spin anisotropy
has been reported earlier,4 but it still remains desirable to
consider an anisotropic model that can be analyzed exactly.
By considering such a model, one would be able to understand
the entanglement between charge and spin degrees of freedom,
and also see in detail how a nonvanishing, complex spin sus-
ceptibility arises. This is the focal point of the present analysis.

In bulk systems, the exchange interaction competes with
the kinetic energy leading to Stoner instability (SI).9 In
finite-size systems, a mesoscopic Stoner unstable regime may
be a precursor of bulk thermodynamic SI. We consider here
an Ising spin interaction. Such a model is Abelian, and
complications due to noncommutativity of different terms in
the action do not arise here. Also, such a model does not
exhibit a mesoscopic Stoner unstable regime.3 This means
that at zero temperature, as the dimensionless parameter J/�

(J being the exchange interaction strength and � the mean
level spacing), the system abruptly switches from a param-
agnetic to a (thermodynamic Stoner unstable) ferromagnetic
phase. We stress that notwithstanding the simplicity of the
model considered, spin-charge entanglement is present here,
and nontrivial transverse ac susceptibility does arise. Some of
our conclusions can be tested in principle in QD’s made of
materials close to the thermodynamic Stoner instability, e.g.,
Co impurities in a Pd or Pt host, Fe or Mn dissolved in various
transition-metal alloys, Ni impurities in a Pd host, and Co
in Fe grains, as well as new nearly ferromagnetic rare-earth
materials.10–12

We consider the charge and spin response functions at
temperatures T � � corresponding to QD’s in the metallic
regime, extensively studied experimentally (see, e.g., Refs. 1
and 13 and references therein). In this regime, many QD
levels (N ∼ T/�) are involved in quantum transport. Then
the structure of single-particle states does not enter the
calculations. In the opposite limit, T � �, when only a few
levels are involved in quantum transport, both elastic and
inelastic cotunneling contribute to it in the Coulomb blockade
valleys while sequential tunneling dominates at the peaks. This
may lead to the spin and orbital Kondo effect14 in nanoclusters
[see also scanning tunneling microscopy (STM) experiment in
Ref. 13 and theory in Ref. 15].

The outline of this paper is as follows. In Sec. II,
we introduce our model Hamiltonian and the subsequent
imaginary-time action. In Sec. III, we employ the technique of
zero-dimensional functional bosonization,4 which eventually
allows us to express the single-particle Green’s function as a
product of the noninteracting Green’s function and a term that
depends on two bosonic fields. We then show how to reduce the
problem to that of classical stochastic equations for the bosonic
fields. Thus, in these sections we demonstrate the power of a

075307-11098-0121/2011/84(7)/075307(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.075307


NISSAN-COHEN, GEFEN, KISELEV, AND LERNER PHYSICAL REVIEW B 84, 075307 (2011)

new method, stochastic bosonization, on a simple theoretical
model, the physics of which is well understood. In Sec. IV,
we express the grand-canonical partition function in terms of
canonical ones, leading to both a mathematical and physical
simplification of the calculation. In Sec. V, we calculate the
tunneling density of states, and in Sec. VI we calculate longitu-
dinal and transverse spin susceptibilities. Section VII presents
a summary of the main results with some perspectives. We
include some more technical calculations in four Appendixes.

II. HAMILTONIAN AND EFFECTIVE ACTION

We consider a normal-metal QD in the metallic regime,
where the Thouless energy ETh and the mean level spacing �

satisfy g ≡ ETh/� � 1 (g is the dimensionless conductance).
In addition, the condition Ec � � is fulfilled in a relatively
large QD as � scales with size L as 1/L2 while the charging
energy Ec ∼ 1/L. (Neglecting geometrical factors, for a 2D
quantum dot Ec � � is equivalent to L � aB , where aB is
the effective Bohr radius for electrons in the dot.) It is in this
regime where the problem can be described in terms of the UH.

We restrict ourselves to a simplified version of the UH
where the interaction in the Cooper channel is set to zero and
the spin-exchange term is chosen to be a fully anisotropic
Ising-like term, −J Ŝ2

Z , with a ferromagnetic exchange cou-
pling, J > 0, where ŜZ is the total spin of the dot in the
ẑ direction. This form of interaction is sufficient to bring
about the Stoner instability phenomenon and other spin-related
effects while avoiding calculational complexities inherent to
a fully spin-symmetric model. Possible physical sources for
such an anisotropy may include geometrical and/or molecular
anisotropy, magnetic impurities in the system, or even the
application of anisotropic mechanical pressure.

The complete form of the reduced UH is thus

H =
∑
α,σ

εαa†
α,σ aα,σ + Ec

[∑
α,σ

a†
α,σ aα,σ − N0

]2

− J

4

[∑
α

a†
α,σ σ z

σσ ′aα,σ ′

]2

. (1)

Here {εα} is a set of electronic levels in the dot, and N0 in
the charging term represents a positive background charge
controlled via an external gate. We assume that the QD is either
isolated or weakly coupled to the leads and in the Coulomb
blockade regime. On the other hand, we will be considering
the spin-disordered regime below the Stoner instability. So the
parameters of the Hamiltonian (1) obey

J < � � T � Ec, (2)

where T ≡ β−1 is the temperature.
The Euclidean action corresponding to the Hamiltonian (1)

is given by

S[�,�] =
∑

α

∫ β

0
dτ

{
�α(∂τ + εα − μ)�α

+Ec

[∑
α

�α�α − N0

]2

− J

4

[∑
α

�ασ z�α

]2
⎫⎬⎭,

(3)

where we use spinor notations �α = (ψ↑α(τ ),ψ↓α(τ )). We
introduce two auxiliary bosonic fields, ϕc(τ ) and ϕs(τ ), to
decouple the Coulomb and exchange terms with the help of
a standard Hubbard-Stratonovich (HS) transformation. This
results in the following action:

S = Sc + Ss + Smix, (4)

where

Sc =
∫ β

0
dτ

[
ϕc(τ )2

4Ec

− iN0ϕ
c(τ )

]
,

Ss =
∫ β

0
dτ

ϕs(τ )2

J
, (5)

Smix =
∫ β

0
dτ

∑
α

�α[∂τ + εα − μ + iϕc + σ zϕs]�α.

Here σ z is a Pauli matrix, the bosonic fields are periodic, and
the fermionic fields are antiperiodic in τ with period β. This
action is the starting point for all the subsequent calculations.
We will use the functional bosonization approach as developed
in Refs. 4 and 16: first we gauge out the mixed fermionic-
bosonic terms in the action (5) and then integrate over the
fermionic field, thus arriving at a purely bosonic action. After
that, instead of dealing with this action directly, we will use a
stochastic bosonization as described in the following section.

III. FROM FUNCTIONAL TO STOCHASTIC
BOSONIZATION

In order to gauge out the mixed fermionic-bosonic terms in
the action (5), we introduce a generalized gauge transforma-

tion, �̃α = T −1�α,�̃α = �αT , with

T = eiθc(τ )I+θs (τ )σ z =
(

eiθc(τ )+θs (τ ) 0
0 eiθc(τ )−θs (τ )

)
.

“Gauging out” implies the following identity:

�α[∂τ + iϕc(τ ) + σ zϕs(τ )]�α = �̃α [∂τ + A] �̃α, (6)

where A is some constant matrix. In order to fulfill (6), we
require the gauge matrix T to obey

[∂τ + iϕc(τ ) + σ zϕs(τ )]T = T A. (7)

Since the bosonic fields are real, this equation separates into
real and imaginary parts, corresponding to the exchange and
charge channels. Using the substitution A = Asσ z + iAc for
the constant matrixA in the matrix gauge equation (7), we have

θ̇ a(τ ) = Aa − ϕa(τ ), (8)

where a stands either for charge, c, or spin, s.
To determine the constants As and Ac, we note that the

antiperiodicity of the fermionic fields requires that T (β) =
T (0). This in turn implies θs(β) = θs(0) + 2π ins and θc(β) =
θc(0) + 2πN with integer ns and N . Now we single out zero-
Matsubara-frequency components of the bosonic fields ϕa(τ ):

ϕa(τ ) = ϕa
0 + ϕ̃a(τ ), βϕa

0 ≡
∫ β

0
dτϕa(τ ). (9)
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Integrating Eq. (8) over τ from 0 to β results in Ac =
ϕc

0 + (2π/β)N and As = ϕs
0 + (2π i/β)ns , so that the gauge

equation (8) reduce to the following form:

θ̇ c(τ ) = 2π

β
N − ϕ̃c(τ ), (10a)

θ̇ s(τ ) = 2π i

β
ns − ϕ̃s(τ ). (10b)

After the gauge transformation, the mixed action in Eq. (5)
is reduced to the following quadratic fermionic action in terms
of the transformed fields:

Sf =
∫ β

0
dτ

∑
α

�̃α(τ )[∂τ + εα − μ̃σ ] �̃α(τ ). (11)

The zeroth components of the bosonic fields (D5) enters
Eq. (11) via the spin-dependent effective chemical potential
μσ given by

μ̃σ = μ − iϕc
0 − σϕs

0 − 2π i

β
(N + σns), (12)

where σ = ±1 for spin up and spin down, respectively.
The gauge equations (10) become important for correlation

functions that are not gauge-invariant but depend on phase
terms that are functions of the gauge parameters θc and θs

(e.g., the Green’s function calculated in the following section
and Appendix A). These parameters are functionals of the
bosonic fields ϕ̃c(τ ) and ϕ̃s(τ ), respectively. Thus, in order
to calculate these phase terms, one should solve the gauge
equations and then carry out the integration over the bosonic
fields.5,16

Here, however, we consider an alternative method, which
bypasses the need to carry out the functional integrals over
ϕ̃c,s(τ ). Even though in our case these integrations pose
no great difficulty, the method we consider has general
applicability and could be used in cases in which such
integrations are impossible to perform analytically.

Our approach is to view the gauge equations (10) as classi-
cal Langevin equations governing the stochastic dynamics of
θc and θs , with the bosonic fields playing the role of noise. The
distribution of the noise is determined by the bosonic actions
Sc and Ss , Eq. (5).

The Langevin equations can be mapped, via the standard
tools of classical stochastic analysis,17 to Fokker-Planck
(FP) equations from which the time-dependent distribution
functions for θc and θs can be determined. As an example, the
form of the FP equation derived from Eq. (10a) is

∂Pc

∂τ
=

(
2π

β
N − iζ

)
∂Pc

∂θ
+ Ec

∂2Pc

∂θ2
, (13)

where Pc is the distribution function for the gauge parameter
θc, and ζ is a constant (details regarding the transition from
Langevin to FP equations and their solution are given in
Appendix C). Equation (13) is a standard diffusion equation
with a drift term, the solution of which (with an appropriate
initial condition) is simply a decaying Gaussian, explicitly
given by Eq. (C5).

This distribution, and a similar one for θS, can now be used
to calculate the averaging of any phase terms involving the
gauge parameters in the calculation of non-gauge-invariant

correlation functions. Thus we can, in effect, replace a
functional integration with an integration over a finite number
of parameters. This is an alternative method by which to
integrate out the finite frequency components of the bosonic
fields ϕc(τ ) and ϕs(τ ).

IV. SINGLE-PARTICLE GREEN’S FUNCTION:
EFFECTIVE CHARGE QUANTIZATION

We begin with calculating the temperature Green’s function
(GF) in the grand-canonical ensemble, and we will show that
in the Coulomb blockade regime, it reduces naturally to one
in the canonical ensemble. Our starting expression is

Gσ (τ,μ) =
∑

α

Gα,σ (τ,μ),

(14)

Gα,σ ≡ 1

Z(μ)

∫
D[�α�α]e−S[�α�α ]�α,σ (τi)�α,σ (τf ),

where Gα,σ is an auxiliary GF corresponding to a level εα ,
S[�α�α] is the α term in the Euclidean action (3), and τ ≡
τf − τi .

After the HS transformation and gauge transform (6),
the Gaussian integration over the quadratic fermionic action
(11) is straightforward. The resulting GF of noninteracting
electrons corresponding to this action, G0

α,σ (τ,μ̃σ ), depends—
via Eq. (12)—only on the zero-frequency component of the
bosonic fields ϕa

0 . This allows us to subdivide the remaining
functional integration with the bosonic part of the action (5)
into that over the zero-frequency, ϕa

0 , and finite frequency, ϕ̃a ,
components, which results in the following expression:

Gα,σ = �c(τ )�s(τ )
〈〈Z0(μ̃)G0

α,σ (τ,μ̃σ )〉〉0
〈〈Z0(μ̃)〉〉0

. (15)

Here �a(τ ) are the phase correlation functions resulting from
the functional averaging of the charge or spin phase factors
over the finite-frequency components of the appropriate fields,
and 〈〈· · ·〉〉0 stand for the functional integrals over the zeroth-
component fields ϕc

0 and ϕs
0. All these functional integrals

are defined in Eqs. (A1)–(A3) in Appendix A. Then Z0(μ̃) =
Z0

↑(μ̃↑)Z0
↓(μ̃↓) andG0

α,σ (τ,μ̃σ ) is the grand-canonical partition
function18 of noninteracting electrons with the spin-dependent
chemical potential μ̃σ , defined by Eq. (12).

The charging effects can be fully accounted for by intro-
ducing winding numbers in the integration over ϕc

0:

ϕc
0 = ωm + ϕ̃c

0

β
ωm = 2π

β
m, (16)

where −π < ϕ̃c
0 � π and an integer m is a winding number.

In the original work of Gefen and Kamenev,5 these were not
considered, leading to an incorrect final result. They were first
introduced in the context of the charging interaction on small
metallic grains by Efetov and Tschersich19 within a Matsub-
ara framework, and were finally implemented correctly by
Sedlmayr, Yurkevich, and Lerner20 within a Keldysh-
technique framework. The introduction of the winding num-
bers (16) allows us to replace integration over ϕc

0 with
summation over all integers m and integration over ϕ̃c

0. The
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sum over m is performed using the Poisson formula, which
results in a new summation of the form∑

N

e−βEc(N−N0)2 × F(N ).

The Poisson resummation transforms summation over m into
summation over the conjugate variable, N . In our case, ϕc

0
represents a phase whose conjugate is evidently the particle
number N . While the sum over the parameter m had many
contributions [since (βEc)−1 � 1], the sum over N contains,
under the conditions (2), only two terms N = N0 ± 1

2 near
the Coulomb peak (N0 is half an integer) and one term in
the Coulomb valleys (i.e., everywhere outside of the region of
width T near the peak): the contribution of all the other terms
is exponentially suppressed. This is a manifestation of charge
quantization in QD’s.

In this way, we perform the integration in Eq. (15) to find
(see Appendix A)

Gα,σ (τ,μ) = �̃c(τ )�̃s(τ )

Z̃(μ)

∑
N

e−βEc(N−N0+ τ
β

)2IN, (17)

IN ≡
∫ ∞

−∞
dϕ̃s

0e− [ϕ̃s
0]2

βJ

∫ π

−π

dϕ̃c
0

2π
ei(N+ τ

β
)ϕ̃c

0Z0(μ̃)G0
α,σ (τ,μ̃σ ),

(18)

where the reduced phase correlation functions �̃a are defined
in Eq. (A4). The effective charge quantization in Eq. (17)
makes it natural to change over from grand canonical to
canonical quantities for a given N , followed by a weighted
summation over N , where required. Let us stress that the
canonical quantities are auxiliary, and we calculate in this
way the grand-canonical GF of Eq. (17).

Expressing IN via canonical quantities leads to an extra
summation since Z = ∑

n eβμnZn, etc. This calculation is
detailed in Appendix B. The resulting full single-particle GF in
imaginary time (following summation over all single-particle
energy states) is given by

G(τ,μ) = πT

�

e−(Ec−J/4)|τ |

sin(π |τ |T )

F (τ )

F (0)
, (19)

where

F (τ ) =
∑
N

e−βEc(δN)2
N∑

M=−N

e− 1
4 β(�−J )M2−τEN,M ,

(20)

δN ≡ N − N0 − μ

2Ec

, EN,M ≡ 2EcδN − JM

2
.

The double summation above arises from replacing the grand-
canonical partition function in terms of the sum over canonical
ones, Z(μ) = ∑

n eβμnZn. The summation parameters are the
electron number, N , and the total spin of the dot (in units
of h̄/2), M . Naturally, the GF is spin-independent: we are
considering the regime of parameters, Eq. (2), below the Stoner
instability where there is no symmetry breaking to distinguish
opposite spin polarizations. Note that this result is valid in the
regime (2), provided that

N � � T , (N − |M|) � � T , (21)

i.e., when the QD contains many electrons and is not very close
to the Stoner instability. Moreover, under these conditions

the sum over M in Eqs. (19) and (20) can be replaced by
an integral from −∞ to +∞, and the exponent of J 2τ 2

4β(�−J )
resulting from this integration can be totally neglected. With
the same accuracy, we should neglect the exchange energy
J in the exponent in Eq. (19) disregarding a renormalization
(shift) of the charging energy Ec due to spin-spin interaction
(cf. Ref. 4). Thus we find

G(τ,μ) = πe−Ec |τ |

β� sin
(

π |τ |
β

) 1

Z̃

∑
N

e−Ec[β(δN )2−2τδN], (22)

so that under conditions (2) and (21)—not surprisingly—the
one-particle GF is independent of the exchange part of the
universal Hamiltonian (1). Such a dependence would emerge
only very close to the Stoner instability, when |� − J |/J � 1,
but this parametric region is beyond the scope of the presented
technique. While Eq. (22) provides a representation of the
single-particle GF in the limit (2), the full dependence on J

and � is still preserved in the exact expressions (17) and (18).
However, the limit J ∼ � ∼ T cannot be described within the
present formalism and requires separate analysis.

V. TUNNELING DENSITY OF STATES

The tunneling density of states (TDoS), ν(ε), can be
directly related to the conductance of the QD in the limit
of weak coupling to the leads and is thus a quantity of
great importance. The TDoS is given by ν(ε) = − 1

π
ImGR(ε),

where the retarded GF, GR(ε), is a Fourier transform of
the GF in real time, G(t,μ), obtained from Eq. (22) by
the straightforward analytical continuation from the upper
half-plane. Since G(τ,μ) is independent of the exchange
energy under the conditions (2) and Eq. (21), so is the TDoS.20

For tutorial purposes, we use the results of Appendixes A
and B to derive a more general expression for ν(ε), valid for
any relation between the parameters in Eqs. (2) and (21), and
we show how it goes over to the known expression20 under
conditions (2) and (21).

Using the GF in the ε representation, Eq. (B7), and
performing the summation over all the levels as described
at the end of Appendix B, we find

ν(ε)

ν0
= 1

Z̃

∑
N

N∑
M=−N

e−βEc(N−Ñ0)2− 1
4 β(�−J )M2

× [1 − n(ε − μ̄ − ξN,M ) + n(ε − μ̄ − ξN−1,M−1)],

(23)

where we have defined

ξN,M ≡ 2Ec

(
N − Ñ0 + 1

2

) − 1
2J

(
M + 1

2

)
(24)

and

μ̄ ≡ 1
2�(N + M), Ñ0 ≡ N0 + μ

2Ec

, (25)

while ν0 = 2/� is the TDoS in the absence of interactions,
n(ε) ≡ [1 + eβε]−1.

Equation (23) is the general expression for the TDoS for any
combination of parameters for a many-electron dot. When the
inequalities (2) and (21) are satisfied, we can easily sum over
M as described at the end of the previous section and then limit
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(c)

FIG. 1. TDoS (in units of ν0) as a function of ε ≡ ε/Ec for T = 0.2Ec and �/T = 0.1 in (a) a CB valley (Ñ0 = 100), (b) an intermediate
region (Ñ0 = 100.35), and (c) a CB peak (Ñ0 = 100.5).

the summation over N to the two terms for which the value of
|N − N0| is minimal (although deep in the Coulomb valley,
only one term is actually contributing). The resulting TDoS
is independent of J (or, more precisely, tiny J -dependent
corrections are beyond the accuracy of current calculations
and thus omitted) and coincides with that obtained in Ref. 20:

ν(ε)

ν0
= U (ε − ξN ) + e−β(ξN −μ̄)U (ε − ξN+1)

1 + e−β(ξN −μ̄)
, (26)

where U (ε − ξN ) ≡ n(ε − ξN−1 − μ̄) + 1 − n(ε − ξN − μ̄),
and ξN is obtained from ξN,M by setting J = 0 in Eq. (24).
We illustrate the dependence of ν on energy for integer,
half-integer, and intermediate values of Ñ0 in Fig. 1, for a
specific choice of parameter values T and �. Its dependence
on temperature at the bottom of a Coulomb blockade valley
is depicted in Fig. 2. It is important to note that the TDoS
obtained in the Coulomb valleys is not physical since we
neglect cotunneling contributions; however, the T dependence
near the peak will be obtained as a linear combinations of those
shown in Fig. 2.

Note that for any given set of parameters, the center of
the TDoS curve is at ε0 = 1

2�Ñ0 − 2Ec(N − Ñ0) and thus a
function of Ñ0, Eq. (25). With this moving from one Coulomb
valley to the next, the TDoS curve is shifted by �/2 due to
adding an extra electron to the dot, which raises the effective

0.5 1 1.5 2 2.5 3
T

0.2

0.4

0.6

0.8

1
ν

FIG. 2. Dependence of the TDoS (in units of ν0) on the temper-
ature (measured in Ec) at the bottom of a CB valley (Ñ0 = 70) for
�/Ec = 0.02.

chemical potential and thus shifts the TDoS curve. That is the
reason for the “half-gap” in the TDoS at the degeneracy point.

VI. MAGNETIC SUSCEPTIBILITY

We now turn to calculating the longitudinal and transverse
magnetic susceptibilities of the system.

It is clear that only the static component of the longitudinal
susceptibility is nonzero due to the lack of spin-flip processes
in the Ising model.21 A direct calculation of the correlation
function 〈Sz(τ )Sz(0)〉 shows this to be τ -independent, as
expected. The static susceptibility is given by

χzz = 1

β
lim
h→0

d2

dh2
lnZ(h), (27)

where Z(h) is the partition function of the system calculated
in the presence of the following source term in the action:

Sh = −h

2

∫ β

0
dτ

∑
α

�ασ z�α. (28)

The calculation is straightforward, leading to the result

Z(h) = κ exp

{
β2h2

4β(� − J )

}
,

with κ being some irrelevant constant. Plugging this into the
definition (27) yields the well-known expression

χzz(ω = 0) = 1

2

1

� − J
. (29)

As expected, the static susceptibility is independent of the
number of particles on the dot, external gate voltage, charging
effects, etc.

We now turn to a calculation of the transverse magnetic
susceptibility. This quantity is inherently different from the
longitudinal one since it is dynamic: the model allows
for transitions between different transverse spin-polarization
states.

We define the dynamic transverse susceptibility in imagi-
nary time as

1

β
χ+−(τ ) = 〈σ+(0)σ−(τ )〉, (30)
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where σ+ = ∑
α �α↑�α↓ and σ− = ∑

α �α↓�α↑. Thus we
need to calculate the functional average of∑

α,β

�α↑(0)�α↓(0)�β↓(τ )�β↑(τ ),

with the action given by Eq. (3). The procedure closely follows
that of the calculation of the GF described in Sec. IV. The final
outcome of this calculation is

χ+−(τ ) = βeJτ

Z̃(μ)

∑
N

e−βEc(N−Ñ0)2
N∑

M=−N

{
e− 1

4 β(�−J )M2

× eJτM
∑

α

[1 − nα(μ̄↑)]nα(μ̄↓)

}
, (31)

where μ̄σ ≡ Nσ � and Nσ is the total number of electrons with
the spin projection σ =↑ , ↓.

Fourier-transforming the result of Eq. (31) to Matsubara fre-
quencies and then performing a simple analytic continuation,
we find the imaginary part of the physical response function
χ+−(ω):

Imχ+−(ω) =
√

πβ(� − J )

2J
e

β

4 [(�+J )−(�−J ) ω2

J2 ]

×
(

1 + ω

J

)
sinh

[
βω

2

]
sinh

[
β�

2

(
1 + ω

J

) ] . (32)

This function is depicted in Fig. 3. The most salient features
are a linear dependence at the origin and the existence of a peak
at a certain ω0. Both the slope at the origin and the value of ω0

can be used used to characterize an experimentally obtained
curve of the transverse magnetic susceptibility as a function of
frequency. We find the slope at ω → 0 as

1

β
Imχ+−(ω → 0) ≈ ω

2J

√
π

β�
, (33)

where the approximation was made consistent with the
inequality (2). Under the same condition, the peak frequency
is given by

ω0 ≈
√

2J 2

β (� − J )
. (34)

Yet another parameter of interest is the full width at half-
maximum (FWHM). Numerical analysis shows that it is
proportional to the resonance frequency: W ≈ 1.59ω0. This
result was derived by numerically obtaining the FWHM for
various values of ω0 and fitting the results to a linear curve, as
shown in Fig. 4.

The imaginary part of the susceptibility represents the
systems capacity to absorb and dissipate magnetic energy at
a nonzero frequency. For the static susceptibility, only a real
part is finite. A simple calculation leads to

Reχ+−(ω = 0) = 1

�
e

β

4 (�+J ) ≈ 1

�
. (35)

Note that in the limit J = 0, we recover the well-known
identity χ+− = 2χzz for the static susceptibilities. The real
part of χ+− at finite frequencies can be found either directly

1 2 3 4 5
ω

Imχ

(a)

0.5 1 1.5 2
ω

Imχ

(b)

FIG. 3. 1
β

Imχ+− as a function of frequency ω (in units of �)

for (a) �

T
= 0.1 and J

�
= 0.1,0.2, and 0.3 for the left, center, and

rightmost curves, respectively, and (b) J

�
= 0.1 and �

T
= 0.05,0.1,

and 0.2 for the top, center, and bottom curves, respectively.

or via the Kramers-Kronig relations, but we do not present the
result here as it has little physical relevance.

As in the case of the longitudinal magnetic susceptibility,
it is clear that the transverse susceptibility is not affected by
the charging interaction in the dot. Once again we see that
under conditions (2) and (21), the charge and spin degrees of
freedom are effectively decoupled.

0.02 0.04 0.06 0.08
ω0

0.02

0.04

0.06

0.08

0.1

0.12

W

FIG. 4. Fit of numerically acquired data for FWHM to function
W = αω0, yielding α = 1.59. R2 for this fit is 0.999.
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VII. SUMMARY

The main results of this work fall into three basic categories:
the single-particle GF, the TDoS, and the magnetic suscepti-
bilities. The results for all three classes of correlation functions
were obtained by means of the functional bosonization
approach combined with the solution of classical stochastic
equations for the bosonic fields. We have considered the
Ising version of the universal Hamiltonian for describing
the interplay of the spin and charge degrees of freedom in
metallic quantum dots. Such a model is Abelian and therefore
does not include the physics of noncommutative variables.
It also does not exhibit the mesoscopic Stoner instability
regime. Nevertheless, the spin-charge entanglement is present,
being manifested in, e.g., nontrivial ac spin susceptibility. The
model, being a simplified version of the quantum universal
Hamiltonian model, gives a qualitatively correct description
of the thermodynamics and transport through nanostructures
in the vicinity of the thermodynamic Stoner instability point.
The stochastic bosonization appears to be a very powerful tool
for the treatment of Abelian gauge theories and a promising
method for solving non-Abelian models corresponding to
isotropic and anisotropic quantum limits of the universal
Hamiltonian. The theory of thermodynamic Stoner instability
and its influence on transport through a single-electron transis-
tor can be tested experimentally in quantum dot device granular
systems10–12 and nanoclusters.13,15 While the partition function
and TDoS can be calculated using considerably simpler
methods, the general equations for the GF and dynamical
magnetic susceptibility require powerful machinery of either
the functional or stochastic bosonization.

We summarize below the central results and key observa-
tions reported in the paper.

(i) Canonical variables and charge quantization. In our
calculation of the GF, the tools we used and the choices made
not only allowed us to carry out a nonperturbative calculation,
but also had physical significance. The use of functional
bosonization and generalized gauge transformations and the
implementation of winding numbers, as well as the transforma-
tion to conjugated variables via the Poisson resummation, led
us to employ canonical quantities. The latter is a consequence
of strong charging interaction.

(ii) Regimes of validity. The transition to canonical quan-
tities, namely the introduction of the canonical partition
function, also led to further insight with regard to the various
physical regimes in which the system may be found. Our
calculation of the canonical partition function itself [and
the associated quantity ZN (/εα)] imposed limitations on the
physical parameters involved. We found that the system must
be large enough (meaning a large number of electrons) and far
below the Stoner instability point. We had to self-consistently
assume that the fluctuations in the systems magnetization were
much smaller than the system size. This corresponds to a
requirement that the system be far from a phase-transition
point, which in our case is the SI point.

(iii) Spin-charge entanglement. The introduction of the
canonical partition functions led directly to a summation over
all possible values of the magnetization. These are of course
limited to |M| < N . Since the number of particles itself is
controlled by the charging interaction when in the CB regime,

and the fluctuations of the magnetization are influenced by the
exchange interaction, this can be seen as a form of coupling
between the charge and spin degrees of freedom. The coupling
between the two interaction channels becomes important as
the magnitude of magnetization fluctuations increases, i.e.,
as one approaches the SI point. Only then do values of
M that approach the system size become accessible and,
consequently, of physical importance. Far below the SI point,
the spin-charge coupling is very weak, and the effects of
interplay are minimal. Our calculation of the TDoS showed
the exchange interaction to have an extremely negligible effect.
The magnetic susceptibilities in turn showed no dependence
on the charging interaction.

(iv) Determining J and �. The calculation of the transverse
magnetic susceptibility is, to our knowledge, a new result, and
perhaps the most important in this work. As we have discussed
previously, the importance of this result is that it provides an
experimental method to determine the values of the parameters
J and �. Our result is a direct prediction of the absorption
spectrum of the system, and as such should be amenable to
experimental measurement. The various curve characteristics
that we derived, including the slope at ω → 0, the location of
the resonance frequency, and the FWHM, should, in principle,
through their dependence on J and �, allow these values to
be ascertained from such a measurement.
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APPENDIX A: GRAND-CANONICAL SINGLE-PARTICLE
GREEN’S FUNCTION

In this appendix, we present a detailed nonperturbative
calculation of the single-particle Green’s function (GF) for
our model system (1). The GF itself was used to derive the
tunneling density of states (TDoS), but its calculation also
serves to show the methodology used in calculating the various
other quantities considered in this work.

As discussed in Sec. II, a Hubbard-Stratonovich (HS) trans-
formation is applied, reducing the action to the form presented
in Eqs. (4) and (5). Carrying out the Gaussian integration over
the fermionic fields after the gauge transformation (10), we
obtain the GF as follows:

Gα,σ (τ,μ) = �c(τ )�s(τ )

×
∫ ∞
−∞dϕc

0e−Sc
0 [ϕc

0]
∫ ∞
−∞dϕs

0e−Ss
0[ϕs

0]
[
Z0(μ̃)G0

α,σ (τ,μ̃σ )
]∫ ∞

−∞dϕc
0e−Sc

0 [ϕc
0]

∫ ∞
−∞dϕs

0e−Ss
0[ϕs

0]Z0(μ̃)
.

(A1)

Here Z0(μ̃) = Z0
↑(μ̃↑)Z0

↓(μ̃↓) and G0
α,σ (τ,μ̃σ ) are the

grand-canonical partition function18 and GF of noninteracting
electrons with the spin-dependent chemical potential μ̃σ ,
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defined by Eq. (12). Both Z0 and G0 are functions of the
zero-Matsubara components ϕc

0 and ϕs
0 of the bosonic fields,

over which the integration in Eq. (A1) is carried out with

Sc
0 = β

[
ϕc

0

]2

4Ec

− iβN0ϕ
c
0, Ss

0 = β
[
ϕs

0

]2

J
. (A2)

The functional integration over the remaining components
of the bosonic fields results in the appearance of the phase-
correlation functions:

�c(τ ) = 〈ei[θc(τf )−θc(τi )]〉ϕ̃c ,
(A3)

�s(τ ) = 〈eσ [θs (τf )−θs (τi )]〉ϕ̃s .

The functional averaging above is carried out with the
weights exp[−S̃c,s], where S̃c,s are obtained from the ap-
propriate bosonic action in Eq. (5) by subtracting the zeroth
Matsubara components of Eq. (A2).

The calculation of the correlation functions of Eq. (A3) is
carried out in Appendix C using the tools of stochastic analysis.
The results are

�c(τ ) = e
−Ec(|τ |− τ 2

β
)
e

2π iN
τ
β ≡ �̃c(τ )e

2π iN
τ
β ,

(A4)

�s(τ ) = e
J
4 (|τ |− τ 2

β
)
e

2π ins τ
β

σ z ≡ �̃s(τ )e
2π iN

τ
β .

At this point, we introduce the winding numbers, as
discussed in Sec. IV of the main text. Following the transition
ϕc

0 = ωm + ϕ̃c
0

β
, and utilizing the identities Z0(μ − iωm) =

Z0(μ) and G0(τ,μ − iωm) = e−iωmτG0(τ,μ), we end up with

Gα,σ (τ,μ) = �̃c(τ )�̃s(τ )

Z̃(μ)

∑
m

e2π i(N0− τ
β

)m− π2m2

βEc Im,

Im ≡
∫ ∞

−∞
dϕ̃s

0

∫ π

−π

dϕ̃c
0e− [ϕ̃s

0]2

βJ
− [ϕ̃c

0]2

4βEc
+ϕ̃c

0(iN0− πm
βEc

)Z0(μ̃)G0
α,σ .

The grand partition function Z̃(μ) above is represented by
the same double-integral and sum with G0 replaced by 1.
The exponential factors involving N and ns arising from the
phase-correlation functions and the noninteracting GF cancel
each other out exactly. This is hardly surprising as they are
completely arbitrary.

The summation over the winding numbers above can be
performed using the Poisson formula

∞∑
k=−∞

f (2πk) = 1

2π

∞∑
m=−∞

∫ ∞

−∞
eimxf (x) dx. (A5)

This results in the expression for the GF given by Eqs. (17)
and (18) in the main text.

APPENDIX B: CALCULATIONS IN AN AUXILIARY
CANONICAL ENSEMBLE

We express Z0(μ) in Eqs. (17) and (18) via the sum of the
canonical partition functions for a system of n noninteracting
electrons, Z0

n, using the standard relation

Z0(μ) =
∏
α

[1 + e−β(εα−μ)] =
∑

n

eβμnZ0
n. (B1)

To express the results of further integration in a convenient
way, we also define the grand-canonical and canonical partition
functions with one level, εα , excluded,

Z0(/εα,μ) =
∏
α′ �=α

[1 + e−β(ε′
α−μ)] =

∑
n

eβμnZ0
n(/εα). (B2)

Then we substitute into Eq. (18) the finite-temperature GF
of noninteracting fermions,

G0
α,σ (τ > 0,μ) = e−(εα−μ)τ [1 − nα,σ (μ)], (B3)

where nα,σ (μ) is the Fermi-Dirac occupation factor. We
limit the calculation to G(τ > 0) since G(τ ) = −G(τ + β).
Recalling that Z0(μ̃) = Z0

↑(μ̃↑)Z0
↓(μ̃↓), we cast Eq. (18) into

the form

IN =
∫ ∞

−∞
dϕ̃s

0e− [ϕ̃s
0]2

βJ

∫ π

−π

dϕ̃c
0

2π
eiNϕ̃c

0 e−(εα−μ+σ
ϕ̃s

0
β

)τ

×
∑
m,n

e[βμ(m+n)−iϕ̃c
0(m+n)−σ (m−n)ϕ̃s

0]Zσ,m(/εα)Z−σ,n.

Carrying out the integration over ϕ̃c
0 yields a Krönecker delta

δN,n+m. Performing the Gaussian integration over ϕ̃s
0 and

defining M = m − n, we find

IN =
N∑

M=−N

eβμN+ 1
4 βJ (M+τ/β )2−(εα−μ)τZN+M

2
(/εα)ZN−M

2
.

Substituting this into Eq. (17) yields, after straightforward
algebraic manipulations,

Gα,σ (τ > 0,μ) = 1

Z̃(μ)

∑
N

N∑
M=−N

ZN+M
2

(/εα)ZN−M
2

× e−βEc(N−N0)2+βμN+ 1
4 βJM2−(εα+ξN,M )τ,

(B4)

where ξN,M are defined in Eq. (24).
The canonical partition functions ZN and ZN (/εα) are

evaluated in Appendix D, resulting in

ZN = e− 1
2 β�N2

, ZN (/εα) = [1 − nα(μ̄0)] ZN, (B5)

where the Fermi factor for the αth level, nα(μ̄0) ≡ [1 +
eβ(εα−μ̄0)]−1, is taken with the auxiliary chemical potential
μ̄0 ≡ N�.

Substituting Eq. (B5) into Eq. (B4), we find

Gα(τ > 0,μ) = 1

Z̃

∑
N

e−βEc(N−Ñ0)2

×
N∑

M=−N

e− 1
4 β(�−J )M2

[1 − nα(μ̄)]e−ξα (N,M)τ ,

(B6)

where μ̄ and Ñ0 are defined in Eq. (25) and the auxiliary
partition function Z̃ ≡ F (0) is given by Eq. (20) in the main
text. The result is naturally spin-independent. Technically, the
formal spin dependence vanished when calculating the integral
IN , Eq. (18). The GF for negative τ can be obtained from
Eq. (B6) using G(−τ ) = −G(β − τ ).
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Now we find the full GF by summing over all single-particle
states εa . This summation is carried out in the usual way
by making the substitution

∑
α Gα → �−1

∫ ∞
0 G(εα)dεα , i.e.,

effectively by averaging over disorder by introducing the
mean level spacing �. This leads to Eq. (19) in the main
text.

Finally, we write the GF in the energy representation.
Making the standard analytical continuation to the real time,
τ → it , and Fourier transforming the GF to the energy domain,
we obtain the retarded GF used in the calculation of the TDoS
as follows:

GR
α (ε) = 1

Z̃

∑
N

N∑
M=−N

e−βEc(N−Ñ0)2− 1
4 β(�−J )M2

×
[

1 − nα(μ̄)

ε − εα − ξN,M + i0
+ nα(μ̄)

ε − εα − ξN−1,M−1 + i0

]
.

(B7)

APPENDIX C: PHASE-CORRELATION FUNCTIONS
AND STOCHASTIC ANALYSIS

Here we use stochastic analysis to calculate the phase-
correlation function �c defined in Eq. (A3). �s has been
calculated in exactly the same manner.

We note that the gauge equation (10a) can be viewed as a
Langevin equation wherein the field ϕ̃c(τ ) plays the role of the
stochastic force (noise), the distribution of which is governed
by the action Sϕ̃c obtained from the appropriate bosonic action
in Eq. (5) by subtracting the zeroth Matsubara components of
Eq. (A2). The noise correlation function is given by

〈ϕ̃c(τ )ϕ̃c(τ ′)〉 = 2Ec

[
δ(τ − τ ′) − 1

β

]
, (C1)

which follows from the expansion of ϕ̃c(τ ) in terms of
Matsubara components: ϕ̃c(τ ) = ∑

m�=0 ϕ̃c
me−iωmτ . Indeed, the

functional distribution of ϕ̃c
m is∫

D[ϕ̃c(τ )]e− ∫ β

0 dτ {ϕ̃c(τ )[4Ec]−1ϕ̃c(τ )}

=
∫ ∏

m�=0

dϕ̃c
me− ∑

m,n �=0 ϕ̃c
m[

βδm,−n
4Ec

]ϕ̃c
n , (C2)

which corresponds to 〈ϕ̃c
mϕ̃c

n〉 = 2Ecβ
−1δm,−n, immediately

leading to Eq. (C1).
It is convenient to represent the noise field as ϕ̃c(τ ) =

η(τ ) + iζ with η(τ ) a random function and ζ a Gaus-
sian random variable satisfying 〈̃η(τ )〉 = 〈ζ 〉 = 〈̃η(τ )ζ 〉 = 0,
〈̃η(τ )̃η(τ ′)〉 = 2Ecδ(τ − τ ′), and 〈ζ 2〉 = 2Ec/β. As η(τ ) is
standard white noise, we follow the standard procedure17 to
map the Langevin equation (10a) to a Fokker-Planck (FP)
equation:

∂Pc
ζ

∂τ
=

(
2π

β
N − iζ

)
∂Pc

ζ

∂θ
+ Ec

∂2Pc
ζ

∂θ2
. (C3)

Here Pc
ζ (θ,τ ; θ ′,τ ′) is the conditional transition probability

function for a given ζ , formally defined by Pc
ζ (θ,τ ; θ ′,τ ′) =

〈δ[θ (τ ) − θ ]δ[θ (τ ′) − θ ′]〉η, where the 〈· · ·〉η means averaging

over the white noise η(τ ). The full transition probability
function Pc(θ,τ ; θ ′,τ ′) is given by the subsequent averaging
over the quenched (i.e., τ -independent) variable ζ (as, e.g., in
Ref. 22):

Pc(θ,τ ; θ ′,τ ′) = 〈δ[θ (τ ) − θ ]δ[θ (τ ′) − θ ′]〉η,ζ , (C4)

i.e., Pc ≡ 〈Pc
ζ 〉ζ .

Equation (C3) is a standard diffusion equation with a
drift term. Its solution, with the natural boundary condition
Pc(θ,τ ; θ ′,τ |ζ ) = δ(θ − θ ′), is a decaying Gaussian:

Pc(θ,τ ; θ ′,τ ′|ζ ) =
exp

{
− [(θ−θ ′)+( 2π

β
N−iζ )|τ−τ ′|]2

4Ec |τ−τ ′|

}
√

4πEc|τ − τ ′|
. (C5)

Now we write �c(τ ), defined in Eq. (A3), in terms of the
transition probability function (C4):

〈ei[θc(τf )−θc(τi )]〉ϕ̃c =
∫ ∞

−∞
dθdθ ′Pc(θ,τi ; θ

′,τf )e−i(θ−θ ′).

Substituting here the solution (C5), we find the conditional
(for a given ζ ) phase-correlation function as

�c
ζ (τ ) = e−Ecτ e−ζ τ e

−i2πN
τ
β , (C6)

where we defined τ = |τf − τi |. Finally, the averaging over the
quenched random variable ζ results in the first of Eqs. (A4).
The second one, for �s(τ ), was obtained by applying, step by
step, exactly the same procedure.

APPENDIX D: CALCULATION OF THE CANONICAL
PARTITION FUNCTION

In this Appendix, we evaluate the canonical partition
functions ZN and ZN (/εα) defined in Eqs. (B1) and (B2). It
follows from Eq. (B2) that

ZN (/εα) =
∫ π

−π

dϕc

2π
eiNϕc

Z0
α(μ = −iϕc/β)

=
∫ π

−π

dϕc

2π
eiNϕc

∏
α′ �=α

(1 + e−βεα′ −iϕc

). (D1)

We calculate ZN (/εα) (and thus ZN ) in the saddle-point
approximation:

ZN (/εα) ≈ e−Sα (ϕc
0)

∫ π

−π

dϕc

2π
e− 1

2 [S ′′
α (ϕc

0)](ϕc−ϕc
0)2

, (D2)

where

Sα(ϕc) = −iNϕc − ln
∏
α′ �=α

(1 + e−βεα′ −iϕc

). (D3)

The saddle-point equation, S ′
α = 0, is convenient to write by

replacing
∑

α′ f (εα′ ) with �−1
∫ ∞

0 dεf (ε) as in Appendix B.
This gives, after calculating the integral, the following equation
for finding ϕc

0:

N + 1

1 + eβεα+iϕc
0

= 1

β�
ln(1 + e−iϕc

0 ). (D4)

The Fermi factor there, being of order 1, can be neglected,
which means that it is the same saddle point we would find in
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a calculation of ZN : for large enough N , the saddle point
is unaltered by the exclusion of a single state. Assuming
also that N is so large that βN� � 1, we find from
Eq. (D4)

−iϕc
0 = βN� ≡ βμ̄. (D5)

In the same approximation, Sα(ϕc
0) = 1/(β�), so that calcu-

lating the Gaussian integral in Eq. (D2) gives

ZN = e− 1
2 βμN, (D6)

while ZN (/εα) differs only by the exclusion of the level α:

ZN (/εα) = [1 − nα(μ̄)] ZN. (D7)
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