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The magnetic phase diagram of a layered II-VI semiconductor model with s-d coupling between
interface-localized exciton holes and the magnetic layer is analyzed. As a function of three competing
interactions, which can be varied experimentally, we find various sequences of thermal transitions
between maximally four different types of magnetic order and a classical phase transition at T = 0.
A sudden breakdown of the magnetic polaron and its restoration at higher temperature is found to
occur for a certain parameter regime. The competition between spin glass and antiferromagnetic
order and the polaron-size determine predominantly existence and shape of the polaron depression.
Previous work done on a CdTe/Cdi—.Mn,Te Villain-pseudospin model is generalized in many
directions, which includes i) magnetic field behaviour, ii) regime of replica symmetry breaking
by calculation of an Almeida Thouless surface, iii) effects of antiferromagnetic interaction in the
magnetic layer, iv) polaron size effects, and, above all, v) an exploration of the whole range of
magnetic phenomena and limitations of the model.

I. INTRODUCTION

Advances in nanostructuring of materials appears to lead to rapidly growing possibilities for comparing theory
with experiments on systems which show on one hand true phase transitions but also mesoscopic size effects and
dimensional crossover.

In pioneering papers mesoscopic effects were considered by Weissman'® as a tool for understanding complex mag-
netism such as spin glass order. Weissman dealt with the fundamental question of whether the droplet picture or
Parisi symmetry breaking provide a proper description of experimental facts. More recently, other groups®* analyzed
for example conductance noise of mobile carriers which experience scattering on randomly frozen magnetic moments.
Moreover, citing here only a few different examples, an analogy with 1/f noise was observed in conductance fluctua-
tions and discussed by Dietl et al®.

In previous work® we adapted an SK-type Villain Ising pseudospin-model® to a finite size and mesoscopic problem of
layered II-VI dilute magnetic semiconductor (DMS). Quantitative and qualitative agreement with experiments was
achieved by the calculation of the magnetic part of the exciton magnetic polaron energy and of the Zeeman splitting.
An optimal fit with experimental data for a particular sample Cd,Mn, ,Te, x = 33%, was obtained and proved
the need for the presence of spin glass order parameters and small antiferromagnetic clusters. Simpler descriptions
in terms of Brillouin functions employing Neél-temperature shifts, as borrowed from antiferromagnetic systems, were
incompatible with specific features of the experimental data?®.

In this earlier work, magnetic field dependence, replica symmetry breaking, and the attempt to model the antiferro-
magnetic effects by an explicit antiferromagnetic interaction in the Hamiltonian were not yet considered. This will be
achieved in the present paper and, in addition, the present work is geared to provide a general view of the physics of
the multi-parameter DMS layer model with substantial polaron formation. We consider this theoretical work suitable
to stimulate further experiments and an indispensable condition for a cross-control with predictions of alternative
Heisenberg model descriptions or QMC calculations.

In this respect the role of the Heisenberg nature of manganese spins is important, since Rigaux et al” showed the ex-
istence of a Gabay-Toulouse line in the magnetic field behaviour. The anisotropy induced by a Dzyaloshinskii-Moriya
interaction may be responsible for Ising behaviour.

Our model is analyzed without imposing restrictions on the many parameters which determine its phases and the
transitions between them. A rather involved picture emerges as a function of three competing interactions, of the
finite polaron partition of the magnetic CdMnTe-layer, and of the number of polaron spins associated with each of
the independent exciton-holes.

Several motivating aspects for further research existed since Ref. 5. For example the need to include small antiferro-
magnetic clusters in order to obtain an optimal fit suggests to give up full frustration in favor of partial frustration
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with additional antiferromagnetic interaction. This is also required to describe the antiferromagnetic phase transition
which is known to occur® at high manganese concentration z.

Corrections of replica symmetry breaking have been shown to become large at low temperatures. They play a fun-
damental role in spin- and fermionic systems as well. Their experimentally verifiable role is interesting in itself. For
example the phenomenon of (history-dependent) aging'® appears to require Parisi replica symmetry breaking (RSB).
The goal of the present work is to meaning and the limitations of replica symmetric results under the participation
of frustrated, of antiferromagnetic and of s-d mediated interactions.

II. THE VILLAIN PSEUDOSPIN MODEL FOR EXCITON HOLE GENERATED POLARONS IN DMS
LAYERS

Magnetic properties of the semimagnetic semiconductor (Cd, Mn)Te are determined by the spin5/2 Mn?*t ions
that substitute C'd-ions randomly in the geometrically frustrated fcc lattice. The Pauli exclusion principle allows
such a redistribution of electrons of the d-shell of Mn?*-ion such that the total spin of electrons attains its maximal
possible value S = 5/2, whereas the total orbital momentum sums up to zero. The interaction between the band of
(s or p)-electrons and localized d-moments can be cast in the usual s — d exchange form. The interaction between
local moments is mediated by conduction electrons through Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange and
results in effectively antiferromagnetic coupling. The strength of the antiferromagnetic interaction between Mn-spins
falls off rapidly with the distance. Thus, the nearest neighbour (NN) approximation can be used instead of long range
RKKY-exchange. By increasing the manganese concentration, clusters of magnetically coupled Mn ions are formed.
At concentration above 20% a percolating Mn cluster emerges, which exibits a transition into a spin glass phase.

In Ref. 5 the Ising pseudospin model of a spin glass was proposed for (Cd, Mn)Te. According to this model the
magnetic entity that freezes at low temperatures is not a Heisenberg Mn spin, but a tetrahedron with four Mn-
spins on the top. Such tetrahedrae are formed at high enough concentration of Mn. Due to antiferromagnetic
next-neighbour interaction, the Mn spins in the ground state of the tetrahedron build so-called canted structures.
All ground state configurations of the tetrahedron can be divided into two classes, providing that the configurations
from different classes can not be transformed one into another by a continuous rotation of spins. Each class can be
characterized by a topological invariant &;;x = 0;(0; x o) that is a mixed product of three spins from any face of the
tetrahedron. The normalized value S = £/|¢| can be considered as an Ising pseudospin.

In an earlier paper® we focussed on the explanation of experiments performed on a CdTe/Cd; _,Mn,Te layered
system with z = .33 by means of a frustrated Villain-pseudospin model. It was possible to fit all specific features,
which could not be explained before by apparently oversimplified models.

The given concentration of manganese implies a freezing temperature of roughly 8 K at x = .33. This phase was
analyzed in our paper® by the use of spin glass order and in a replica symmetric approximation. The basic feature
such as a maximum in the magnetization and corresponding EMP energy was generated by our model in agreement
with the experiment.

The intention of the present paper is to derive all relevant cornerstones of the general phase diagram that occurs
under variation of the manganese concentration. The theoretical model of Ref. 5 is extended in a way which allows
partial frustration and the inclusion of a translationally invariant antiferromagnetic interaction. This is achieved by
combining our exciton magnetic polaron model® with the Korenblit-Shender model of an antiferromagnetic spin glass®.
The basic step is to define an interaction between two sublattices and to distribute the random part by a standard
Gaussian weight function. Korenblit and Shender derived for such a model an Almeida Thouless line, which deviates
remarkably from the ferromagnetic counterpart. The exciton magnetic polaron changes the behaviour in an external
field and one is bound to reconsider the line of ergodicity breaking and, of course the complication of replica symmetry
breaking beyond the line. The model extension is physically important, since not only the freezing temperature rises
with increasing manganese concentration x but also the antiferromagnetic interaction part becomes larger.

The two-sublattice model we are analyzing in this paper is described by the Hamiltonian

Ng Ng J Np Ny
- Z Z J(Til,Tj2)S(Ti1)S(Ti2) - ﬁ ZU(Rl) Z [S(Rl + Ti1) + S(Rl + riz)]
i1=1 jo=1 =1 i17i2:1

—HZ Z o(Bi) + S(Ri+riy) + S(Bi + 13y )] Zth no (Ri)o(Riqr) Z,UhTLRl (1)

1=1 i1,12=1 pllkl

where r;,,7;, run over the sites of the distinct sublattices 1 and 2, respectively. We denote the Ising Villain-spins
by S, representing thus tetrahedra of manganese Heisenberg spins by simpler effective pseudospins with only two



orientations®, and the exciton hole spin at the interface-site R; by o(R;). The (ferromagnetic) exchange coupling with
each of the N, hole spin is restricted to a subset of N; among the Ng Villain spins. The concentration of exciton
holes can in principle be controlled by a chemical potential p, which may generalize too the previous model®. Each
exciton hole forms one polaron. However, the number N, of polarons should equal the hole number, which needs
a selfconsistent calculation. We consider in most of the calculations of this paper pup, = 0. A low hole density is
assumed such that polarons do not overlap. For this reason the hole-hole interacion Jj_j is considered to be very
small and negligible in most of the calculations. If we speak about ferromagnetic alignment of polaron and hole-spins
below a much higher polaron temperature (set by the s-d coupling Jk) this means that the transition is subject to
fluctuation effects. Without any doubt the polaron temperature 7}, ~ Jg can be so high that one can speak of a
pseudo-ferromagnetic phase; this was in fact the case in the = .33 sample of Cdy_,Mn,Te.

The model definition is completed by the definition of a Gaussian distribution for the independent coupling constants
(acting between different sublattices)

P(5J) =

Ng eap |:_& (6J+ Jaf/NS)2 (2)

o 2 J?

where J (1, ,7j5) = 6J(riy,7j5) + Jay(riy —1j5)
Thermodynamic limit, phase transition, and mesoscopic feature: we illustrate the model by Figure 1
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FIG. 1. Layer model with polarons of N; spins; each polaron (large semi-circle) belongs to one of N, interface sites of exciton
holes (small circles). The total number of spins not included in the polaron is indicated to be Ns — N, Ni. All Ng spins interact
equally via a partially frustrated interaction with antiferromagnetic part.

where the thermodynamic limit is reached by taking the number N, of polarons and the total number of Villain
spins Ng to infinity. The number of spins N; of each polaron is kept finite; numerically we consider the range of
N; = 10 — 100. This is enough to find three-dimensional behaviour in the magnetic layer. Finite size effects then
remain due to a factor N1V, /Ng which assumes finite values between 0 and 1. This spatial inhomogeneity introduces
a third competing interaction based on Jg > 0 and hence with ferromagnetic tendency. Taking formally the number
of polaron-spins NV, to infinity, the hole polarization effect on the polaron spins becomes of measure zero (keeping fixed
the s-d interaction) and one returns to the case of antiferromagnetism competing with spin glass order as considered
by Korenblit and Shender®.

III. THE COMPETITION BETWEEN PARTIALLY FRUSTRATED -, ANTIFERROMAGNETIC -, AND
FERROMAGNETIC S-D INTERACTION WITH THE EXCITON HOLE

Korenblit and Shender® elaborated the difference between the ferromagnet-spin glass and the antiferromagnet-spin
glass phase diagram as it emerges in an external magnetic field. An effective field like the one that exists within
the magnetic polaron regime will prove to have a similar but more involved effect. Since the effective polaron field
originates however in the s-d ferromagnetic interaction between exciton-hole spin and manganese spins, the multiple
competition between direct and mediated interactions lead to a particularly rich phase diagram. This multiple
competition exists between ferromagnetic s-d coupling, which leads to an effective polaron field, antiferromagnetic
interaction of the manganese spins, and frustrated interaction which tends to freeze random order and thus competes
with any kind of translationally invariant order. Moreover these interactions are confined within regions that possess
only limited spatial overlap, depending on the extension of the polaron inside the magnetic system. The latter roughly
corresponds to the extension of the exciton hole wave function within the magnetic layer.



Practically all coupling constants can be varied in the experiment. The strength of the s-d coupling depends on the
interface, on the prelocalization of the excitons and on the manganese concentration too. At very low concentrations
even a change of sign is expected, resulting in an antiferromagnetic s-d coupling and a Kondo effect that has its
own specific way of competition with the spin glass phase. A true quantum phase transition must be expected
there, but this is not subject of the present paper. The antiferromagnetic part of the Villain spin interaction clearly
increases with the manganese concentration and eventually leads to the spin glass-antiferromagnet phase transition
at high concentrations. Monte Carlo calculations were applied to this case in®. We consider this transition in the
framework of the Villain pseudo Ising spin model below. Specific predictions from the present model give hints for

future experiments.

A. Free energy and the set of selfconsisent equations: experimental relevance at low temperatures

Let us first report results within the replica symmetric approximation. In the simplest case already five coupled
selfconsistent equations must be solved simultaneously, and, employing these solutions, the free energy has to be
evaluated in order to determine the stable solution. This task becomes rather complicated at 1RSB, but several
of the phase transitions occur outside the regime of broken ergodicity and, for the rest, the ORSB is proved to be
qualitatively right.

The free energy reads up to an irrelevant constant

N, J? N1
F = N—zJKpMp—Jaf m1m2—ﬁ((h—1)( @ —1)— pnz;z/ In COSh (p,zn)/T)

TNS - N1 P Z / In cosh (O,ZH)/T)] - Tx—:ln [cosh((H + Jx Mp)/T) + cosh(un/T)] (3)

k=1,2

where the effective field H is different inside and outside the polaron. The total number of Villain spins S within
the magnetic barrier is denoted by Ng, while the number of polarons is called NV, and N; stands for the number of
Villain-spins on each sublattice of a single polaron. The effective field on sublattices 1 and 2 is given by

Hi(p,2,) = H+ J p/Ni — Jogm, + J /@, =1

Hs(p,z,) = H+ J, p/N1 — Jaym, + J\/q, 22 (4)

The selfconsistent equations follow as

H Jk
= tanh|= + —
an [T+

G G
T /Ztanh(ﬁl(p,z)/T)+/z tanh(Hy(p, z)/T)

] (5)

G G

my, = a/ tanh(H,(p,2)/T) + (1 — a)/ tanh(H,(0,2)/T) (6)
G G

= a / tanh?(Hy (p, 2)/T) + (1 — ) / tanh2(H, (0, 2)/T) (7)

where Kk = 1,2 and a = NNy - We have omitted a contribution from Jr—p due to the smallness of the coupling; its

inclusion mto the mean ﬁel(f equatlons would be obvious. Since we consider nonoverlapping polarons one can set the
total number of spins Ng of the magnetic layer N¢ = NN, and thus remove the polaron number from the equations.

1. Our strategy to obtain the general phase diagram by solving the multidimensional selfconsistency problem

The number of model parameters Ny, N, J, Ji, Jo¢, and eventually pj together with variables temperature and
magnetic field is too large to derive and represent without difficulty the general phase diagram. We take the satisfying
fit of the Villain spin model with experiments for a given sample® and different models as a motivation and justification
to consider the phase diagram in generality. We chose to analyze first the T — 0 limit, since the multiple solutions
depend on a smaller number of parameters and allow a classification and determination of the stable solution in a
general way.



B. Zero temperature limit of the selfconsistent equations

The zero temperature limit of the multiparameter free energy and of the saddle point equations contain a welcomed
reduction of the number of free parameters. The spin glass order parameter on both sublattices saturate, ¢;(0) =
g2(0) = 1 while the hole polarization can be either p = 1 or p = 0, depending on the coupling constants.

1. The different magnetic phases at zero temperature and transitions between them

The considerable simplification of the large set of coupled equations at 7" = 0 helps in finding a cornerstone of the
phase diagram. For either hole polarization p = 0 or p = 1 we find solutions, which allow for phase transitions, but
also between the two classes transitions occur.

The zero temperature limit of the free energy reads (up to irrelevant constants)and expressed in terms of the
normalized effective field h, = H, /J

B = aJi g M = Jumims = 3 [ahs(plerf (ha(p) + (1= a)s(0)erf (hu(0))]

r=1,2

—J\/g S [aeap(~h2(p)/2) + (1 — a)exp(—h2(0)/2)] - %IH + Jx M| 8)

k=1,2

The T = 0 selfconsistency equations follow as

m, = _%erf(‘]“fmR _ ‘;z:le — H) N ]_VNl erf(JafmTZNT]H), with k=1,2 and ¢, =1 (9)

where % indicates the adjoint of sublattice k. We evaluate the energy E = F(T = 0) for the multi-valued solutions
of the selfconsistent equations in order to select their physical branches. The answer is nontrivial from the start,
since the competition between ferromagnetic s-d coupling and antiferromagnetic interaction - and in addition the
destructive action of the frustrated part, which behaves differently with respect to ferromagnetic or antiferromagnetic
ordering once a field is present - may lead to either one of p =0 or p = 1.
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FIG. 2. Figa: Sublattice magnetizations (set of possible solutions of the selfconsistency equations at zero temperature), shown
as a function of the antiferromagnetic coupling J,; and classified by hole polarization p = 1 or by p = 0 (dashed). For large
enough J,; the sublattice magnetizations start to differ allowing an antiferromagnetic phase (p = 0) or an (anti)ferrimagnetic
phase (p = 0), which approaches saturated staggered order in the large J,; limit. Fig b: Transitions between the two forks
occur as the ground state energies show.

The p =1 class of solutions bifurcate at higher J,7 than the p = 0 class. This is because the effective non-staggered
field induced by the hole polarization is opposed to the antiferromagnetic order. In addition the frustrated part of
the interaction also competes with antiferromagnetism and is responsible for the breakdown of different sublattice
magnetization (at the bifurcation points). There is also a competition between ferromagnetic and spin glass order,
but the source of the effective polaron field is spatially separated and survives in a p = 1 solution. Note that we did
not display the spin glass order parameters. Working at 7' = 0 they assume their maximum value 1 everywhere, thus



by definition one calls the p = 0 type solution with equal sublattice magnetizations (small J,f-regime) a spin glass
phase, the p = 1 type solution (under the same conditions) a dirty ferromagnet. In the large J,r-regime the split up
sublattice magnetizations are more stable; their p = 0 type solution would be a dirty antiferromagnet, while p =1 is
a dirty (anti)ferrimagnet.

A special point arises when one of the sublattice magnetizations changes sign and becomes exactly zero. Thus one
sublattice becomes nonmagnetic, while the other is ferromagnetic with doubled lattice constant.
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FIG. 3. Difference of ground state energies E(p = 1) — E(p = 0) for hole polarizations p = 1 and p = 0, shown as a function
N1
N

of joy = Jas/J, jr = Jk/(N1J), and polaron partition size a = 5.

The ground state energy of the hole-polarized p = 1-state is always lower than the unpolarized state, no matter
whether the sublattice magnetizations are equal or not. Fig.3 shows that for the whole range of exchange couplings
and also under arbitrary variation of the polaron size (relative to the entire magnetic barrier) the above statement
holds even near the onset of a nonvanishing antiferromagnetic order parameter. Despite the shift of this transition
to higher antiferromagnetic coupling in the p = 1-case, the lowering of the ground state energy by Am is not enough
to descend below the p = 1-energy. As evaluated below the effects of replica symmetry breaking amount to a shift of
the transition to a smaller JZ Frse by roughly the factor 4/5.

A continuous transition driven by an increasing antiferromagnetic coupling J,s into a ferrimagnetic state occurs. The
sublattice magnetization my decreases and as the J,r grows eventually changes sign.

Due to the model definition the observed T' = 0 transition is free of quantum-dynamical effects. The classical critical
behaviour of the antiferromagnetic order parameter is given by

Am=my —my ~ (Jop = JE)E, Jap > JE (10)

The dependence on the polaron size measured by the number of spins N; relative to the total number N is rather
weak for smaller couplings ji, but begins to show a shift and deformation at larger coupling. This appears reasonable,
since ji is opposed to antiferromagnetic order, which is the source of the hole polarization breakdown. Returning to
full hole polarization at much higher antiferromagnetic couplings however appears surprising.
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FIG. 4. Energy E, polaron magnetization M, and sublattice magnetizations mi, mo as a function of magnetic field H and
of the antiferromagnetic interaction J,; are shown for J =10, N =2N; =50 at T =0

Figure 4 shows the T' = 0 (stable) solutions for polaron magnetization M and sublattice magnetizations mj,ms in a
wide range of the Jx- and J,s-interactions. The competing effect between ferromagnetic polaron order and transition
to antiferromagnetic order of the whole magnetic layer is displayed for polarons filling half the space of the layer, ie
Ni/N = % The a = %—dependence is weak and the result represents well enough the general case. The selfconsistent
equations show that there exists however too a dependence on the polaron spin coordination number N; (keeping Jx
fixed), which is not expressed in terms of a. This will play an important role for the thermal behaviour of the model.

IV. DIFFERENT SCENARIOS OF THERMAL PHASE TRANSITIONS

In the multi-parameter space various different sequences of phase transitions occur as a function of temperature.
While the hole polarized state at T" = 0 was seen to be stable for all parameters, for certain parameters nonmonoton-
uous thermal behaviour occurs in p(T") and in related quantities such as polaron magnetization.

A. Domain of sudden hole depolarization and reentrance

The expected thermal decay of polarization at a temperature related to the ferromagnetic interaction Jg (>> Jn—n)
and to the polaron partition, given by the ratio @ = N;/N, is preceded by a less expected breakdown in a low
temperature interval. We are going to provide detailed solutions for this case in Figures 5,6,7 below.



1. Discontinuous breakdown and restoration of hole polarization; transitions between four magnetic phases with
ferri antiferro ferri2
Tpolaron > Tc > Tc > T’C

In Figure 5 the hole polarization is plotted together with the sublattice magnetizations and with the spin glass
order parameters. One observes a discontinuous drop to zero of the polarization and hence a destruction of the
magnetic polaron in a temperature range between T' & 1 and T = 12. The discontinuous restoration of p induces also
discontinuous changes of magnetizations and SG order parameters. In the p = 0 interval an antiferromagnetic phase
with almost saturated order exists. Complete saturation at T = 0 cannot be reached, since as the T" = 0 results had
already shown the p = 1 solution is always stable at T = 0 and renders m; + ms finite. The analogous sublattice
asymmetry of the EA order parameters ¢, ¢» exists but is invisibly small in Fig. 5. In turn the sublattice splitting
beyond p-restoration at higher temperatures is relatively large. The magnetization splitting is of course reflected in
m1 + mo. The phase between p-restoration and the breakdown of the antiferromagnetic order parameter at 7' = 29,
which is related to the antiferromagnetic coupling J,r = 30 is called ferrimagnetic. Close to the latter transition it
has an almost ferromagnetic character, while on the low temperature side it is almost antiferromagnetic. In between
it crosses over smoothly between these two opposite limits and on this way one sublattice magnetization eventually
becomes zero and changes sign.
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FIG. 5. A sequence of phase transitions is shown for the parameter choice of J = 8,Jx = 12, J,y = 30: below T}, ~ 40
the ferromagnetic polaron is formed in a pseudo phase transition, followed by a continuous antiferromagnetic phase transition
into a ferrimagnetic phase with sublattice-asymmetric spin glass order parameters qi1 # g2; at still lower T one sublattice
magnetization changes sign slowly and, before reaching perfect antiferromagnetic order, the hole polarization undergoes a
sharp drop to zero. Before the T = 0 limit is reached the reentrant discontinuous phase transition into the hole polarized state
takes place.
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FIG. 6. left Figure: Cascade of phase transitions described by the (pseudo-)ferromagnetic polaron order together with the

hole polarization p and with antiferromagnetic order parameters ms —mi and g2 — q1; right Figure: free energies for the stable
hole-polarized and for the p = 0 solution (dotted curve)
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FIG. 7. Main figure: Cross sections through the surface of selfconsistent solutions for hole polarization p at
Jxk =12,J = 8, Joy = 30, displayed as a function of temperature for chosen numbers N; of associated polaron spins. The
Figure shows curves for N; = 32,33, and34 and also uses noninteger values 33.5,33.6 to approach the point of intersection at
N; = 33.555. The higher value of the double-valued polarization solution forms the stable branch. The totally depolarized
interval appears below N1 = N, = 33.555; for this parameter the otherwise disconnected surfaces intersect. The inserted figure
shows two surfaces of solutions for the hole polarization as obtained for polarons with spin number N; > N, = 33.555. The
onset of hole depolarization for N < NN, is seen in front.

We have analyzed the parameter region and in particular the Nj-dependence of the polaron breakdown regime.
As described before the almost antiferromagnetic order is responsible for the breakdown. With increasing spin glass
interaction J the p-depleted regime is reduced, since J competes with .J,¢ and tends to depress antiferromagnetic
order. In the examples of Figures 5-7 the ratio J,r/J = 15/4 favours strongly low temperature antiferromagnetic
order and, as shown before, a reentrant transition into the p = 1 state at 7' = 0 must occur despite the almost perfect
antiferromagnetic order. The a-dependence of the breakdown-regime on the polaron partition within the magnetic
layer is rather weak and insignificant. The N;-dependence describing the coordination number of polaron spins with
each exciton is however strong as Figure 7 shows. For the range of N; Villain-pseudospins considered here, the
behaviour of a CdMnTe-layer is three-dimensional bulk-like (no matter how large «).

B. Monotonuous thermal decay of hole-polarization

Still several different sequences of magnetic phase transitions occur when the peculiar feature of p-depression
and p-restoration in a low temperature interval is absent. The hole polarization then decreases as the temperature
increases, but nonanalytical behaviour still emerges as a secondary effect of transitions driven by the antiferromagnetic
interaction for example.



1. Fully hole polarized phase with intermediate ferrimagnetic phase in the regime Tpoiaron > T2 > Tsq

In Figure 8 the reentrance in a dirty ferromagnetic phase appears. The parameter choice is known to be problematic
w.r.t. spin glass reentrance in the absence of an external field and requires replica symmetry breaking. An intermediate
ferrimagnetic phase with strong antiferromagnetic character occurs in between. The onset of sublattice asymmetry
can be seen as an antiferromagnetic transition as well. The low temperature phase can be predominantly a spin glass
phase in a polaron field caused by the s-d interaction.

1 1
p p
0.8 0.8
0.6 m
: 0.6 x
0.4
ql
0.2 0.4
2 4 6 10 12 14 T 0.2
-0.2
m 2 4 6 8 10 12 14T

1
FIG. 8. An intermediate regime of ferrimagnetic order with reentrant transitions into a dirty ferromagnetic state is shown
for Jk =2,J =8, J,5 =10

2. Low temperature ferrimagnetic (almost-antiferromagnetic) phase induced by hole polarization: sequence of critical points
Tcantiferro > cherri

Figure 9 represents the case where the antiferromagnetic transition occurs first, followed at lower temperatures by
the polaron formation. The latter inevitably leads to the sublattice splitting of the EA order parameters and of —m;
and my as well. In accordance with the T" = 0 result the sublattice magnetizations, in contrast to qi, g2, cannot fully
saturate because of the polaron field. The critical behaviour of g; — ¢» and of m1 +ms at the polaron transition agrees.
This is clearly suggested by Figure 11 and confirmed in the analytical calculation. The standard linear behaviour of
SG order parameters is absent. Instead of 3 = 1, one observes q; — ¢z ~ 7° with § = %

P S T PR TICRN | 2.5 5 7.5 10 12.5 15 17.5 T
FIG. 9. Sublattice anisotropy of qi,q2 (left) and —mi, ms (right) in the regime of monotonuous hole polarization with
Jrx =5,Jay =18, = .5.

The onset of a finite polaron exchange field at T, can be estimated analytically from our selfconsistent equations,
finding

T, ~ Ty exp(—Jag/Ty) with T = Jg/\/2N; (11)
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3. Low temperature ferrimagnetic (almost-antiferromagnetic) phase with Tpotaron = ch””

One may also consider the case of s-d couplings large in comparison to the competing interactions so that the
polaron magnetization sets in at the highest temperature. Of course the present description is still on mean field level
- an exact treatment of the s-d coupling has not yet been achieved - and, taking each polaron as a small independent
system of a finite number of particles the picture of a true phase transition is an artifact of the mean field Ansatz.
However, an arbitrarily small ferromagnetic hole-hole interaction and the infinite-range J- and J, -interactions corre-
late the polarons and the fluctuations can be assumed to be less dangerous for the polaron transition. For comparison
with experiments in small fields the mean field approximation becomes very useful and, theoretically, one can also
imagine the smearing of the transition in a magnetic field (see Figures 15 and 16 below) as an analogy to finite size
effects in zero field.
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FIG. 10. Regime of ferromagnetic polaron transition followed by antiferromagnetic transition at slightly lower temperature
with Jg = b,Ja5 = 16, = .5. The Figure displays the sublattice anisotropy (shaded region) of spin glass order parameters
(left) and of —m1, m2 (right) together with the hole polarization p.
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1 2 3 4 5 6 71-l 2.5 5 7.5 10 12.5 T 15 2.5 5 7.5 10 12.5 15T17.5

FIG. 11. Difference of sublattice EA order parameters g — g1 (curve a) and sum of sublattice magnetizations (m; + m2)/2
(curve b) for Jx =5, .y = 18 (left), Jx =4, J,y = 15 (middle), and Jx =5, Jo5 = 16 (right).

Figure 11 reconsiders the parameter sets of the Figures above and compares ¢z — g1 with m; 4+ may: for Tamtiferro >
Tpoiaron and at the ferrimagnetic transition the order parameters behave like (ch erri _ T)%. In the low temperature
limit mj + my approach the numerically determined finite limit, which represents the incomplete antiferromagnetic
order caused by the p(T' = 0) = 1 hole polarized state. In a low temperature expansion, the linear behaviour of the
sublattice asymmetry of the spin glass order parameter is confirmed by

T [2 J2, +h2 Joth
G —q = 2a—\/je:np(— af emh)sinh( af emh), with  hegen = JK . (12)
7

p
J 2.J2 J2 2N,

Of course the low T limit undergoes corrections from replica symmetry breaking.
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FIG. 12. Spin glass order parameter a),b) and sublattice magnetization c),d) for sublattice 1 as function of the temperature,
Jk and J,s. The parameters are chosen as a = 0.5,J = 8K ,J,y = 15K (for a and c¢) and Jx = 2K (for b and d).

4. Spin glass limit and high polaron temperature

To make contact with the parameter regime explored in Ref. 5 we add the evaluation shown in Figurel3 which
elaborates the characteristic feature of a maximum in the magnetization, for which the frustrated interaction .J is
responsible. The s-d coupling assumed the high value Jxg = 15, which leads to a high polaron temperature T}, ~ 105
in accordance with the estimation rule of Ref. 5. High T, implies a large exchange field, which smears strongly the
spin glass transition.

Since the present work does not focus on quantitative comparison we do not attempt here to model the experimen-
tal curve for 33% manganese by replacing the assumption of small antiferromagnetic clusters by a corresponding
antiferromagnetic interaction.

1
0.474
0.4
0.473 m 0.8
0.3 0.472
0.6
m 0.471
0.2
0.4 q
1 2 3 4 5
0.1
0.469 o2
0.468
20 40 60 80 00 T

20 40 60 80 100 T

FIG. 13. Magnetization (left), its low temperature maximum (middle), and the spin glass order parameter (right), shown for
Jrx =15,J =8, N1 = 50, = .5 and vanishing antiferromagnetic interaction. The spin glass order parameter shows the typical
smearing effect in the large exchange field of the polaron with high temperature T}, =~ 105.
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Further calculations with finite antiferromagnetic couplings show that the maximum becomes less pronounced since
increasing J, s depresses m(T = 0) in the spin glass phase as our T' = 0 calculations above show. The position of the
maximum remains however almost unshifted.

V. BEHAVIOUR IN A MAGNETIC FIELD

The application of a homogeneous field does not destroy the antiferromagnetic phase transition discussed above,
but affects the competition between the effective interactions. The ferromanetic alignment of all polaron spins is
supported by the field. It is thus particularly interesting to study the polaron restoration in the breakdown regime of
Fig.5. The following solutions are obtained at 7' =0

1
0.5 0.7 M
0.4 a) 0.8 0.6 c)
b)
0.6 0-5
0.3 0.4
0.2 0.4 0.3
0.2
0.1 0.2
0.1
10 20 30 40 10 20 30 40 10 20 30 40
‘Jaf Jaf ‘Jaf

FIG. 14. The glassy ferromagnetic—ferrimagnetic transition driven by the growing antiferromagnetic interaction at 7' = 0
and in a homogeneous external magnetic field H is displayed for 0 < J,s/J < 3.5. Part a) shows the sum of sublattice
magnetization, b) the antiferromagnetic order parameter and c) the polaron magnetization M together with M — (m1 + m2)/2
(curve below).

The discontinuity in the zero field transition must be reconsidered in the light of the Falicov-Hui-Berker
conclucions'?!3, once the infinite-range simplification is given up. These authors showed that disorder in many
cases turns a discontinuous transition of the mean field theory into a continuous one, if fluctuations are taken into
account in realistic dimensions. Whether the partially frustrated interaction can change this general conclusion can
not yet be answered and we hope to come back to this question in the context of renormalization of the present phase
transitions.

10 20 30 40 50 T60

FIG. 15. Phase transition cascade from ferromagnetic polaron to ferrimagnet with strong anisotropic spin glass overlap
via hole depolarization with almost antiferromagnetic order to polaron restoration and antiferromagnetic order at lowest
temperatures. The Figure shows sublattice magnetizations —m1 and mo (left part of Figure) and hole polarization p (a), order
parameters (m; + m2)/2 (d) for the smeared ferromagnetic transition in small magnetic field pH/Jx ~ £ and (mz —my)/2
(b), g1 — g2 (c) (in the right part) for the unaltered sharp antiferromagnetic transition at To; & Jo 5 = 30.

As the magnetic field increases the ferromagnetic- and (not shown here) spin glass transitions become smeared
while the antiferro-type order parameters m; —ms or q; — ¢ signalling the onset of ferrimagnetic order remain sharp.
The hole-polarization is restored fast by an increasingly large magnetic field as Figure 16 shows and the secondary
features in the polaron magnetization and in the sublattice anisotropy of the spin glass order parameter are washed
out too.
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FIG. 16. Polaron restoration in a magnetic field shown in p, M, and sublattice asymmetry of g1 —q2, for magnetic fields H = 1
(upper row from left) and H = 3 (second row from left) with coupling constants Jx = 12,J =8, Joy = 30, Ny = 16 = ZN.

VI. REGIONS OF PHASE DIAGRAM AFFECTED BY REPLICA SYMMETRY BREAKING:
DE ALMEIDA THOULESS SURFACE

In order to analyze the stability of the replica-symmetric (RS) solution (5-7) let us consider the small deviation
from the RS-form of matrix Q®°

Q" =q+ ¢, 0 =q + 7, 80 = g0 + 45" (13)

As follows from (1), the fluctuations inside and outside magnetic polaron are completely decoupled. This means
that one should consider the stability of RS solution either inside or outside the MP. Unlike the conventional de
Almeida Thouless analysis, there exist two magnetic fields in the magnetic polaron problem. One field is related to
the s — d coupling of the hole-spin with its environment, providing an effective internal magnetic field. Another one
represents the usual external magnetic field. Taking both into account we discuss the AT-surface (temperature vs two
magnetic fields) which determines the stability region of the RS-solution. Since the coupling of the magnetic polaron
(MP) with environment is chosen positive (ferromagnetic coupling), the AT surface corresponding to the solution
outside the MP is related to effectively higher magnetic fields Hepy = H + heger, > H where heger, = Jrp/(2N1) and
thus lies above the AT surface calculated for the region inside MP. Therefore we consider only the AT surface outside
magnetic polaron.

According to the standard procedure the expansion of the free energy up to second order in J)T = (¢ ¢1 ¢=)is
given by:

- 2 -
5910.81 = Bfsplil + C2 S $ G ead (1)
ab,cd
where Gp,cq reads as follows
Oabed — (BI)?A(S1 + S2)* —i(BT)2A(S1)* —i(BJ)*A(Ss)*
Gabed = —i(BT)*A(S1)* Oab,ca + (BT)*A(S1)* 0 : (15)
—i(BJ)2A(S,)* 0 Sab,ed + (BJ)?A(Sa)*

We denote A(0)* =< 0%?0°0? > — < 0% >< 0°0? >. In order to find the condition for instability of RS solution
it is sufficient to take the eigenfunction corresponding to instability of FM SK model®. The equation for the eigenvalue
A has the form

g—A g1 g2
g1 gi1—A 0
g2 0 g2 — A

0 (16)
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where the matrix elements g are given by

gi1,2 = —i(ﬂJ)Q/ cosh™* (/31{[1,2) , g2 =1+ (ﬂj)2 /G cosh™* (ﬂﬁm) ,

G
z z

g=1—(BJ)? /G (cosh_4 (Bﬁl) + cosh™* (Bﬁg)) . (17)

z

Substituting these matrix elements into expression (16), the new equation for the AT-surface is obtained. Thus,
the replica symmetric solution outside the magnetic polaron is stable when

(%)4 > /ZG cosh™* (,Bﬁl) /ZG cosh™ (ﬂﬁg) . (18)

The result of numerical solution of equation (18) together with (5-7) is presented in Fig.17

FIG. 17. AT-surface for magnetic polaron problem (J,5/J = 1.9, a = 0.5)

The behaviour of AT-lines (the projections to T'— H and T — hezcn, planes) is shown by Figl8-19. As it was
pointed out in Ref. 9 for two-sublattices SK-antiferromagnets, the AT line is a nonmonotonuous function of external
(or internal) magnetic field with a kink at H;, ~ Tn(0). At fields Hepp > Jug the freezing temperature T

decreases exponentially with increasing magnetic field Tp(H) ~ Jexp (—(Heps — Jay)?/(2J%)). We note that the
unusual behaviour of the AT-line exists only when J,7/J > 1. Nevertheless, even in this case two possibility can be
considered. In both cases the staggered magnetization is not equal to 0 above and below the AT-line providing the
existence of nonergodic AF state. The criterion of the AF-instability reads as follows

[1 — Jus (aXI:IJrhwch +(1- a)xﬁ)] [1 +J (a¢ﬁ+heuh +(1- a)qﬁg)] +

exch

+JafJ(a1/1g+h +(1—a)1/)l-l) (a<p1_~1+heuh —l—(l—a)(pﬁ) =0

where

G - ¢, R -
Xﬁ;zﬂ/ cosh *(8H), ¢I:I:B/ %tanh(BH)cosh (BH),

G B Ly B G 2 Ly B
vy =5 [ tanh(3H) cosh (), o5 =5 [ e o310,

with H = Jz,/q — Joym + H.
Nevertheless, in the case shown in Fig.18a, and corresponding to J,5 ~ J, the nonergodic AF state ends up at finite
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temperature at zero field whereas when J,5 > J (Fig.19a), the nonergodic AFM exists at T = 0.

Nonmonotonuous behaviour of T occurs due to the interplay between magnetic field, spin glass and antiferromagnetic
states. Generally speaking, this competition results in suppression of both, AF- and SG-state, by an external magnetic
field. Nevertheless, since suppression of one order parameter is favorable for another one, there exist a region of
magnetic fields, where suppression of the AF-phase facilitates the appearance of the spin glass.

[0}
o
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Temperature (K)

Temperature (K)

[\S)
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4 6 8 10 12 l 2 4 6 10
External magnetic field Internal magnetic field

FIG. 18. Nonmonotonuous AT-line for magnetic polaron for glassy antoferromagnet, (a)temperature vs external magnetic
field Jx = 4, (b)temparature vs Jx, H =0, (J = 8,Joy = 10, a = 0.5)

14 14

12 12}
10 PM 10} PM
> =
o 8 x gf
% AF <& AF

6 %6
g z

4 4l
e E

2 2r SG

AFSG SG AFSG
2. 5 7.5 10 . 12.5 15 17.5 20 2.5 5 7.5 10 12.5 15 17.5 20
External magnetic field

Internal magnetic field

FIG. 19. Nonmonotonuous AT-line for magnetic polaron for the glassy antiferromagnet, (a)AT-temperature vs external
magnetic field Jx = 4, (b)temperature vs Jx, H =0, (J =8,Jo5 =15, a = 0.5)

APPENDIX A

The free energy for 1-step RSB is given by (note that only in this appendix we use capital Letters for all magneti-
zations in order to avoid confusion with the Parisi parameter m of 1-step RSB)

NN, >\ N Ja 1 1
Bf = #SpJKﬁ <U2—§2 - (;ﬁ) )—QN?S log <2cosh (6 [H+JK(U— Q%)D)—BQJ‘ <2M2—§M12——M22> _

(BJ)

1 1
1 <2(1 +mgg + (1 =m)gi —2q1) = 5(1+maly + (1= m)aiy = 2qu) — 5(L+mg, + (1 —m)g3, — 2q21)>

NN, [© ¢ :
_27;]\7‘; / <log (/ [2 cosh (;B(JZ\/M‘F Jy\/2q1 — 11 — 290 + quo + H + Ji (v — &) — Joy (2M — Ml))] )) +
z Yy

16



G m
+log (/ [2 cosh (,B(Jz\/qu — 20 + JUN201 — @21 — 200 + @0 + H + Jic(v — &) — Jop(2M — M2))] )))
Y

N — NN, m
SQmN; / (10g (/ 2005h (ﬂ(JZ\/ 2qo — quo + JZ/\/2Q1 —q11 — 290+ quo + H — Joy(2M — Ml))] )) +

G m
+ log (/ [2cosh (ﬂ(JZ\/2(]0 —q20+Jy\/2q1 — o1 _2q0+q20+H—Jaf(2M—M2))] ))) . (19)
y

Extremizing the free energy with respect to all parameters the new selfconsistent equations are obtained

p=tanh(B(H + Jk€)), v=£(4-2— g

1
N’ (1 +g1), M= §(M1 + M,).  (20)

l\:)ln—\

1
= 5(%0 +q20), @

G _
¢ = E/G N C2|1 Doy C;}Q "Dy
2/, f Coh f ca,
G Gcm—l G Gcm—l
My =a Mﬂka) w,
z f CQ|2 1 z f C1‘2 L
f cm= 2 f cm- 2D
2|21 2\21 1|21 T2
qi21 =« , m£1
2\2 1 1|2 |
G om-1p )
G ( cm ) om )
qi20=0 f 2\21 2|21 +(1-a) f 1|21 1\21 , m £ 0 o
z f 62\2 1 z f C1\2 )

In two limiting cases m = 0 and m = 1 the equations (19) coincide with (5-7) for g1 2 = ¢121 and 12 = qi20
respectively. The equation for Parisi parameter m is given by

2 G G G i G G
(Bi) (710420 — q11¢21) = ﬁ/z <a [log(/y C3h) + log(/y Cih)| +(1—a) llOg(/y Cij) + 108}(/y CI’IB)]) -

1 G IGC;TI IOgC2|1 n fGCgrQ IOgCQ‘Q ) fGC{rlbl long n IGC?‘B 10gC1|2
- o —
2m J f C2|1 f C2|2 L f C1\1 f C1|2

where the following notations are introduced

)

61‘172 = 2COSh(B.E[1(12)), 62‘172 = 2COSh(B(.E[1( 2)+hezch))7 D1|172 = 2S1Hh(6ﬂ-1(12)), DQ‘LQ = 2Slnh(/8(.gl(7l2)+hel-ch)),

) )

Ffl(lz) Jz/qiz0+ Jy/qi21 — G20 — Japmap + H.
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VII. CONCLUSIONS

We analyzed a model which describes layered II-VI semiconductors, where interface-localized exciton holes interact
with spins of the magnetic layer, forming thus magnetic polarons. The interplay between antiferromagnetic (AFM),
spin glass (SG) and ferromagnetic (FM) order in the magnetic layer is taken into account. The competition between
different correlations explains the rich phase diagram of the model. We have shown that the tendency of AFM ordering
in the two sublattice Ising-like magnet results in depolarization of the magnetic polaron within a certain range of
parameters, which depends e.g. on polaron-size, on the relative strength of the AFM and frustrated interaction.
This polarization breakdown occurs in a discontinuous transition (for zero external magnetic field) at temperatures
where AFM order is almost reached; its restoration at lowest temperatures also takes place discontinuously. The
competition between AFM and SG ordering in the presence of an internal magnetic field, related to the magnetic
polaron, also leads to nonmonotonuous behaviour of the Almeida-Thouless line beyond which ergodicity breaking
occurs. This antiferromagnetic effect enlarges the validity regime of the replica symmetric solution. We have shown
that the existence of locally confined magnetic fields due to magnetic polarons gives rise to an unusual spin glass state
with different Edwards-Anderson order parameters for different sublattices. This phase may be called ferrimagnetic
spin glass (ferri-SG). The mean-field critical exponents in the vicinity of the ferri-SG transition point are different
from those in conventional SG theory. The various magnetic phases and transitions between them are analyzed in the
low temperature limit. It is shown that only the spin-polarized solution is stable, providing nevertheless the possibility
of a classical (free of quantum-dynamical effects) antiferromagnetic transition at ' = 0. We have discussed in detail
the behaviour of the magnetic polaron in weak external magnetic fields. Although in such fields the magnetic polaron
is preformed at high temperatures, the almost total breakdown of the hole polarization is shown to occur due to the
antiferromagnetic interaction. We propose to verify the theoretical predictions made in the paper by experiments on
CdTe/Cd;_,Mn,Te for high manganese concentrations.
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